Mbmsystems.ru

Разъедает ли масло резину?

Разъедает ли масло резину?

ООО “ДомРезин”
тел.: +7 (812) 953-52-84
E-mail: domrezin@inbox.ru
г. Санкт-Петербург

Влияние агрессивных сред на каучуки

Действие галогенов

В процессе контакта натурального каучука с галогенами на ряду с присоединением галогена по средствам двойной связи начинается процесс замены водорода с образованием хлористого во дорода .

Хлорирование натурального каучука осуществляется путем пропуска ния хлора по раствору каучука в четыреххлористом углероде или при контакте каучука с хлором под давлением . Хлорирование происходит после образования ряда промежуточных продук тов . Итоговый продукт хлорирования в четыреххлористом углероде является высокомолекулярным соединением циклической структуры , называемое хлоркаучуком . Этот насыщенный продукт является результатом присоединения хло ра , замещения хлором водорода и циклизации .

Хлоркаучук легко растворяем во всех растворителях натурального каучука , за исключением бензина . Растворы его имеют почти та кую же вязкость , как и растворы первоночального каучука , следователь но , хлорирование не приводит к заметному разрыву макромолекул и снижению молекулярной массы . Обычно хлоркаучук полу ¬ чают как в виде белого порошка так и прозрачных пленок . При температуре близкой к 70 ° С он размягчается , переходя в мяг кое и эластичное состояние , при 180 — 200 ° С разлагается с образованием хлора .

Являясь насыщенным соединением , хлоркаучук обладает относи тельно высокой химической стойкостью : он устойчив к влиянию кис лот , солей и щелочей . Он используется в процессе изготовления различных красок , антикоррозионных покрытий и огнеупоров , а также является основой композиции для крепления элементов из резины к металлическим поверхностям .

Хлорирование синтетических бутадиенового и бутадиенстирольного каучуков в растворе четыреххлористого углерода проте­кает в основном по двойным связям и сопровождается сшиванием макромолекул ; циклизации при этом почти не наблюдается. Про­дукты частичного хлорирования этих каучуков, содержащие до 35% хлора, способны вулканизоваться серой и оксидами металлов с образованием ненаполненных вулканизатов с прочностью при растяжении до 13 МПа (130 кгс/см 2 ). Предельное содержание хло­ра в продуктах хлорирования бутадиен-стирольного каучука со­ставляет 53%, а в продуктах хлорирования бутадиенового каучука 65—71%. Эти продукты отличаются высокой химической стой­костью.

Хлорированием наирита в дихлорэтане или хлороформе полу­чают хлорнаирит с содержанием 68% хлора, что соответствует фор­муле (C4H5CI3)п. Хлорнаирит применяется для изготовления клеев, используемых для крепления резины к металлам в процессе вулка­низации резино-металлических изделий.

При взаимодействии натурального каучука с бромом на холоду происходит присоединение брома по месту двойной связи с обра­зованием дибромида каучука — высокомолекулярного соединения состава (С5Н8Вr2)n. Эта реакция на практике применяется для количественного определения каучука в смесях с другими вещест­вами. Дибромид сравнительно неустойчив, при температуре выше 60 °С наступает его разложение.

При взаимодействии натурального каучука с иодом и фтором происходит одновременно окисление каучука. Только в особых ус­ловиях удается получить высокомолекулярные продукты взаимо­действия с иодом и фтором, аналогичные дибромиду.

Действие серной кислоты и сульфатов

При действии на натуральный каучук серной кислоты и сульфокислот образуются так называемые термопрены. В зависимости от условий получения, от количества взятой кислоты могут полу­чаться термопрены разной твердости. Все термопрены термопла­стичны, т. е. способны размягчаться при нагревании.

Некоторые термопрены в виде клея применяют для крепления резины к по­верхности металла и дерева, при обкладке поверхности металли­ческой аппаратуры (гуммировании).

В химическом процессе получения термопрена пользуется нелетучие и более равномерно распределяемые в каучуке сульфокисло­ты. Этот процесс осуществляется смешением n-Толуолсульфокислоты в количестве 8—9% с изопреновым каучуком на каландрах, и дальнейшего разогрева полученной смеси до температуры близкой к 140 °С в течение 3нескольких часов. После окончания термо обработки полученную смесь промывают на вальцах, тем самым удаляя кислоты с дальнейшей сушкой полученного вещества.

При образовании термопренов происходит циклизация каучука в результате взаимодействия соседних двойных связей. Состав термопрена приближается к формуле (C5H8)n, что указывает на то, что кислота не присоединяется к каучуку, а вызывает лишь изменение его молекулярной структуры, при этом количество двойных связей в молекулах уменьшается почти в 2—2,5 раза.

Термопрены растворимы в тех же растворителях, что и каучук.

Вязкость растворов термопрена значительно ниже вязкости растворов исходного каучука, что указывает на снижение молекулярной массы под действием сульфокислот. Термопрены способны вул­канизоваться серой, как и исходный каучук, присоединяют гало­гены и галогеноводороды.

Синтетический цис- 1,4-полиизопрен взаимодействует с сульфокислотами, при этом происходит циклизация с образованием про­дуктов, которые имеют строение, аналогичное строению продуктов взаимодействия натурального каучука с сульфокислотами.

Окисление каучуков

Окисление — основная причина старения каучуков и резины, в результате которого ухудшаются их физико-механические и технологические свойства. Взаимодействие каучука с кислородом имеет весьма существенное значение при проведении ряда технологиче­ских процессов, таких как пластикация, вулканизация и регенера­ция, приводящих к изменению свойств каучука.

Читать еще:  Можно ли перешиповать зимнюю резину?

Продуктами окисления каучуков являются как летучие, так и нелетучие соединения. В смеси легколетучих продуктов реакции окисления натурального каучука обнаружены: двуокись углерода, вода и водород, перекись водорода, формальдегид. В летучих продуктах окисле­ния— бутадиенового каучука — вода, формальдегид, муравьиная кислота.

В продуктах окисления нелетучей природы кисло­род содержится в функциональных группах.

При окислении каучуки могут поглощать значительное количество кислорода. Стало известно, что натуральный каучук в процессе окисления поглощает до 30% кислорода.

Натуральный каучук используемый для технических нужд при комнатной температуре окисляется относительно медленно благодаря присутствию в его составе противостарителей естественной природы. В процессе экстрагировании каучука ацетоном из него вымываются смолы, и естественные противостарители; поэтому экстрагированный и чистый каучуки, лишенные примесей белков и смол, окисляются легче. В начале реакции окисления натуральный каучук характеризуется относительной липкостью, после реакции присоединения 0,5— 1,0% кислорода вся масса каучука размягчается. При дальнейшем окислении и поглощения каучуком 12—25% кислорода, он становится твердым и увеличивается его хрупкость, его поверхность покрывается трещинами.

Из экспериментов известно, что поглощение небольшого количества кислорода приводит к резким изменениям свойств каучука: снижению прочности при растяжении, средней молекулярной массы, вязкости его растворов, повышается его растворимость в растворителях и пластичность. При присоеди­нении 0,5% кислорода прочность при растяжении пленки каучука, приготовленной из латекса, понижается на 50%.

Изменение свойств натрийбутадиенового каучука в процессе окисле­нии имеет другой характер: увеличивается прочность при растяже­нии и жесткость, снижается растворимость.

Вследствие способности легко окисляться каучуки могут применяться только после стабилизации их добавками противостарителей.

Способность каучуков к окислению различна и зависит от их молекулярной массы и структуры: разветвленности молекул, чис­ла двойных связей в основной цепи, наличия полярных замести- , телей, их положения и природы. Так, от хлоропренового каучука, содержащего хлор в качестве полярного заместителя, под дей­ствием кислорода отщепляется хлористый водород. Наличие метильных групп, находящихся в a-положении к двойной связи, способствует окислению в большей степени, чем наличие таких заместителей, как фенильная или нитрильная группы, хлор.

На окисление каучуков оказывает значительное влияние разветвленность макромолекул. Чем больше разветвленность, тем легче развиваются окислительные процессы, вероятно, вследствие большей реакционной способности третичных атомов углерода.

Окисление всех каучуков ускоряется при нагревании, под дей­ствием света, статических и динамических нагрузок, при воздей­ствии солей металлов переменной валентности (Сu, Fe, Мn, Со). Значительное влияние на окисление оказывают различные химиче­ские реагенты и примеси, которые либо тормозят (ингибируют), либо ускоряют (инициируют) процесс окисления. В реальных усло­виях происходит одновременное воздействие нескольких из пере­численных факторов, ускоряющих окислительные процессы. Од­нако действие этих факторов, как правило, не аддитивно.

Механизм окисления каучуков. В соответствии с перекисной теорией окисления, предложенной академиком А. Н. Бахом, моле­кула кислорода присоединяется к окисляемому веществу, не раз­рываясь на отдельные атомы; в результате в качестве первичных продуктов окисления органического вещества образуются перекиси а гидроперекиси, которые легко распадаются.

Установлено, что кислород присоединяется в основном к метиленовым группам, находящимся в a-положении по отношению к двойным связям, с образованием гидроперекисей.

Боковые радикалы представляют собой, как правило, углеводородные цепи, состоящие из большого числа изопреновых групп; по­этому длина образующихся при распаде новых молекул достаточно велика. Распад молекул каучука с образованием высокомоле­кулярных продуктов называется окислительной деструкцией. Окис­лительной деструкцией, происходящей на первоначальной стадии окисления натурального каучука, объясняется понижение молеку­лярной массы, прочности и эластичности, а также повышение пла­стичности, растворимости и снижение вязкости растворов этого каучука.

Интенсивность деструкции каучука в результате его окисления зависит от температуры. Так, при 100 °С на 5—10 атомов прореагировавшего кислорода приходится один разрыв молекуляр­ной цепи.

Чем глубже идет процесс окисления, тем значительнее деструк­ция молекул каучука. При глубоком окислении в результате присоединения больших количеств кислорода образуются низкомоле­кулярные продукты деструкции, содержащие карбонильные и кар­боксильные группы, например левулиновый альдегид.

Установлено, что при окислении каучуков одновременно с деструкцией происходит и структурирование. Соотношение скоростей деструкции и структурирования зависит от структуры каучука и условий процесса окисления. Уменьшение концентрации кислорода ведет к уменьшению скорости деструкции натурального каучука и к повышению скорости его структурирования. При нагревании в вакууме натуральный каучук, весьма склонный к деструкции, под­вергается структурированию. При окислении бутадиенового кау­чука, наоборот, с уменьшением концентрации кислорода скорость структурирования понижается.

Методы исследования, применяемые в настоящее время, дают возможность определить только, какой процесс преобладает, а так­же оценить суммарный эффект изменения структуры каучука под влиянием одновременно протекающих процессов.

Читать еще:  Сколько раз можно перебортировать бескамерную резину?

Натрийбутадиеновый каучук, содержащий бутадиеновые звенья в положении 1,2, по скорости структурирования значительно превосходит натуральный каучук. Это, в частности, объясняется тем, что при нагревании его развивается процесс термического структурирования, который особенно интенсивно протекает при наличии значительного числа боковых винильных групп.

Наблюдаемое при окислении натрийбутадиенового каучука повышение жесткости и прочности, рост условных напряжений при заданном удлинении, понижение относительного удлинения и растворимо­сти свидетельствуют о преобладании при окислении этого каучука процесса структурирования, являющегося результатом соединения цепных молекул в пространственную сетку силами химических свя­зей, и за счет усиления межмолекулярного взаимодействия, вы­званного появлением новых полярных групп (карбонильных, карбоксильных).

цыс-1,4-Бутадиеновый каучук, содержащий всего 2—5% звеньев в положении 1,2, обладает значительно более высокой стойкостью к окислению по сравнению с натрийбутадиеновым каучуком.

По стойкости к окислению ненасыщенные каучуки располагают­ся в ряд: бутилкаучук > бутадиен-нитрильный > хлоропреновый > бутадиен-стирольный > бутадиеновый > изопреновый.

Соединения металлов переменной валентности (Fe, Со, Мn, Сu) каталитически ускоряют процесс окисления каучуков. Особенно активны соли жирных и смоляных кислот, растворимые в каучу­ках. Так, их каталитическое действие на окисление натурального каучука проявляется при содержании 0,1—0,01%.

Некоторые химические реагенты являются ингибиторами окис­ления. Они тормозят процесс окисления, уменьшая скорость окис­ления каучука в десятки и сотни тысяч раз по сравнению со ско­ростью автокаталитического окисления. Вещества, специально при­меняемые для торможения окисления и старения каучука, носят название противостарителей. Ингибирующее действие оказывают и некоторые другие компоненты резиновых смесей.

Действие озона

При действии озона на каучуки образуются озониды; при этом увеличивается масса каучуков и на их поверхности (за исключе­нием натурального и бутилкаучука) образуется хрупкая пленка. Особенно эффективно действие озона на каучук, находящийся под действием растягивающей нагрузки. В этих условиях наступает так называемое озонное растрескивание, поверхность деформиро­ванного образца покрывается трещинами. С увеличением нагрузки озонное растрескивание увеличивается. Окисление кислородом спо­собствует озонному растрескиванию.

Стойкость каучуков к действию озона не одинакова: особенно сильно озон действует на натуральный, бутадиеновый и бутадиен- стирольный каучуки.

Хлоропреновый и бутилкаучук отличаются повышенной стойкостью к действию озона; резины из других кау­чуков требуют специальных мер защиты. Повышенная стойкость бутилкаучука к озону объясняется малой ненасыщенностью, а по­вышенная стойкость хлоропренового каучука — наличием в его мо­лекулах хлора.

CultCars

Другие темы

Лидеры сообщества

голосов
cowboy 0.20
CallMe 0.12
Mehanik 0.12
Kotoparen 0.12
Cheburash 0.12

Уход за резиной

Эта тема наверное до боли всем извесная, но может кому-то пригодится. Нашел на автобазаре польскую косметику с силиконом для резины (шин).

Цена 40 грн, но уторговал за 32 (что в кармане было).
По применению подходит для всех типов шин, сперва надо помыть резину.

Дожаться пока высохнет, распрыскать средство.

Подождать 10-15 мин (я прождал 9) и пройтись сухой тряпкой или полотенцем.

Сегодня ездил целый день и в пыли и по лужам, вроде держится. На 4 колеса ушло ну может грубо 15 мл.

Профиль на драйве: wsokolw.

Некоторым кстати и не нравится Блеск! А хочется чтобы резина была чисто Черной но без блеска.

Я лично пользуюсь проф. химией. чернитель для резины. Если надо просто черное колесико — наносим и потом чуть подождав губкой удаляем остатки, если нужен блеск либо еще наносим либо не стираем!

Сначала друг мне немного подарил концентрата, теперь спокойно беру на мойках сколько надо. взял грамм100 и разбавил в пропорции 1:4-1:6. И хватит надолго.

В состав многих автопокрышек, технической резины, каучуков, битумов итд… входят нефтепродукты в виде «отработки» (её собственно для этого и собирают как втор сырьё, с СТО, погуглите как нить «куплю отработку», ну и ещё для отопления конешно). А вот на модной дорогой резине «еко» масла не юзают, отсюда и её цена, но не в этом смысл…

Про «вред», резина больше всего боится влаги, морозов, времени и неправильного хранения от етого она трескается, и разрушается, что мы видим на производствах, в на очень стрых покрышках … если вы столько же как на производстве и так же будете ездить на своих колёсах то они прийдут в такое же состояние…

Про машинное масло так оно контактирует в двигателе с уймой резиновых изделий и будте уверены если масло хорошее и резина нормальная то оно их не разедает. Повторюсь покрышкам масло(любое) не вредно а даже полезно так как смягчает(времеено) верхний слой в пару микрон, вытесняя с микротрещин и пор воду(которая собственно и рвёт резину на морозе), некотрые поры так затягиваются, да и резина приобретает эстетический вид, в любом случае через пару дней масло высохнет или смоется… Но в любом случае перебаршивать нельзя, я например мою колёса каждый раз а натипаю 1 раз в месяц, или как куда то еду «на показ»…

Кстати можно заменить отработку гуталином, как делал это Берт Монро в Самом быстром индиане.

Это нужный силикон: смазываем нежные места автомобиля

Примерзшие двери, дергающиеся стекла, скрипящий пластик… — самое время проверить, все ли в порядке у вашей машины.

«Возникшая было у меня надежда отвертеться сегодня от смазки Москвича погасла».
А. и Б. Стругацкие «Понедельник начинается в субботу»

Хорошая вещь — швейцарский нож: отрезать, перепилить, пиво открыть, шуруп завернуть — на все случаи жизни годится. Вообще, хорошо иметь универсальное средство, таблетку от всех болезней, смесь, которая смазывает всё… На прилавке автомагазина водители легко, конечно, опознают «вэдэшку» WD-40 — за ее универсальность. Между тем на соседней полке наверняка стоит другой универсал-многостаночник с множеством достоинств… Речь — о силиконовых смазках.

«Вэдэшка» и силиконовые смазки не взаимозаменяемы. Это разные продукты: оба многофункциональны, но каждый — в своей области.

«Плюсами» силиконовых смазок специалисты называют вот что:

  • отличная устойчивость как на морозе, так и при нагреве
  • хорошие водоотталкивающие свойства
  • устойчивость к окислению
  • высокая смазывающая способность
  • не провоцирует образование коррозии
  • силикон нейтрален к резине.

Но общие слова надо проверять на практике. Пройдемся по автомобилю и прикинем, где именно силиконовые смазки могут принести наибольшую пользу. Для начала попробуем открыть дверь.

Примерзла?

Ну, это нормально: близится зима, а потому уплотнители дверей начнет время от времени «прихватывать» — особенно после дождичка или мойки… Чем обработать? «Вэдэшки» в таких ситуациях могут только навредить: в них содержится минеральное масло, от которого резиновые уплотнители разбухают. В качественных силиконовых смазках минеральное масло отсутствует. Такие смазки создают на поверхности тонкую пленку из молекул силикона, устойчивую к мойкам и перепадам температур, и не наносят вреда резиновым деталям.

Нелишним будет обработать и дворники. Для этого нужно их смазать и хорошенько протереть чистой ветошью. Результатом будет защита от примерзания и плавный ход щеток.

Не замерзнут и замки дверей, капота и багажника, если заранее обработать их силиконом. Удобнее использовать для этого смазку с трубочкой. К слову сказать, заодно избавит от заедания.

Не гнется?

В современных автомобилях в дверях чего только нет: электрозамки, электростеклоподъемники, электрозеркала, высоко- и низкочастотные динамики, а в водительской двери — еще и пульт управления чуть ли не половиной автомобиля. В задней двери кроссоверов, универсалов и хэтчбеков имеются еще и светотехника, обогрев и очиститель стекла. И все эти устройства проводкой соединяются с электросистемой автомобиля, жгуты получаются толстые. Они проходят в двери через резиновые гофры. Провода в тесных гофрированных соединениях спустя несколько лет начинают чувствовать себя неуютно: былой подвижности уже нет… А вот если обработать такую гофру изнутри силиконовой смазкой, то жизнь проводки продлится.

Скрипит?

Скрипы торпедо не влияют на безопасность, однако способны вывести из себя кого угодно. Силиконовые смазки легко подавляют эти шумовые воздействия, равно как и скрип дверных петель.

Дергаются?

Когда стекла в дверях начинают нервно дергаться, обычно достаточно смазать направляющие силиконовой смазкой. Плавность хода вернется буквально на глазах. При случае можно обработать и сам механизм стеклоподъемника — станет только лучше.

Если приходится часто двигать туда-сюда сиденья, трансформируя салон, стоит обработать силиконовой смазкой салазки сидений — пусть скользят, а не дергаются.

А что еще?

Для помощи дворникам можно смазать многое: тяги, шарниры поводков и т.п.

Под капотом имеет смысл обработать тросовые приводы — газ, сцепление и тросик привода замка капота. Не помешает освежить петли капота.

Если убедите себя залезть под автомобиль, то можно смело обработать все резиновые чехлы, какие только увидите. Кроме того, силиконы помогут при запрессовке втулок рессор или амортизаторов — если, конечно, вы намерены этим заниматься.

Выдвижные антенны сегодня — довольно редкое явление; впрочем, иногда их устанавливают при тюнинге. В общем, если у вас такая антенна есть — смажьте ее колена: станет лучше!

А вот этого делать не нужно

Кое для чего силиконовые смазки все же не годятся. Например, не стоит пытаться использовать их для обработки заржавевших соединений: не предназначены они для отвинчивания заржавевшей резьбы. Для этого лучше взять «вэдэшку».

Ссылка на основную публикацию
Adblock
detector