Как рассчитать крутящий момент двигателя?
7.2: Классическая механика
Область классической механики включает изучение тел в движении, особенно физические законы, касающиеся тел, находящихся под воздействием сил. Большинство механических аспектов проектирования роботов тесно связано с концепциями из этой области. В данном блоке описываются несколько ключевых применяемых концепций классической механики.
СКОРОСТЬ – это мера того, насколько быстро перемещается объект. Обозначает изменение положения во времени (проще говоря, какое расстояние способен преодолеть объект за заданный период времени). Данная мера представлена в единицах расстояния, взятых в единицу времени, например, в количестве миль в час или футов в секунду.
ЧАСТОТА ВРАЩЕНИЯ – Скорость может также выражаться во вращении, то есть насколько быстро объект движется по кругу. Измеряется в единицах углового перемещения во времени (то есть в градусах в секунду), или в циклах вращения в единицу времени (например, в оборотах в минуту). Когда измерения представлены в оборотах в минуту (RPM), речь идет о частоте вращения. Есть речь идет об об/мин автомобильного двигателя, это означает, что измеряется скорость вращения двигателя.
УСКОРЕНИЕ – Изменение скорости во времени представляет собой ускорение. Чем больше ускорение, тем быстрее изменяется скорость. Если автомобиль развивает скорость от 0 до 60 миль в час за две секунды, в этом случае ускорение больше, чем когда он развивает скорость от 0 до 40 миль в час за тот же период времени. Ускорение – это мера изменения скорости. Отсутствие изменения означает отсутствие ускорения. Если объект движется с постоянной скоростью – ускорение отсутствует.
СИЛА – Ускорение является следствием воздействия сил, которые провоцируют изменение в движении, направлении или форме. Если вы нажимаете на объект, это означает, что вы прикладываете к нему силу. Робот ускоряется под воздействием силы, которую его колеса прикладывают к полу. Сила измеряется в фунтах или ньютонах.
Например, масса объекта воздействует на объект как сила вследствие гравитации (ускорение объекта в направлении центра Земли).
КРУТЯЩИЙ МОМЕНТ – Сила, направленная по кругу (вращение объекта), называется крутящим моментом. Крутящий момент – это вращающая сила. Если к объекту приложен крутящий момент, на границе первого возникает линейная сила. В примере с колесом, катящемся по земле, крутящий момент, приложенный к оси колеса, создает линейную силу на границе покрышки в точке ее контакта с поверхностью земли. Так и определяется крутящий момент – как линейная сила на границе круга. Крутящий момент определяется величиной силы, умноженной на расстояние от центра вращения (Сила х Расстояние = Крутящий момент). Крутящий момент измеряется в единицах силы, умноженной на расстояние, например, фунто-дюймах или ньютон-метрах.
В примере с колесом, катящемся по земле, если известен крутящий момент, приложенный к оси с закрепленным на ней колесом, мы можем рассчитать количество силы, прикладываемой колесом к поверхности. В этом случае, радиус колеса является расстоянием силы от центра вращения.
Сила = Крутящий момент/Радиус колеса
В примере с рукой робота, удерживающей объект, мы можем рассчитать крутящий момент, требуемый для поднятия объекта. Если объект обладает массой, равной 1 ньютону, а рука имеет длину 0,25 метра (объект располагается на расстоянии 0,25 метра от центра вращения), тогда
Крутящий момент = Сила х Расстояние = 1 ньютон х 0,25 метра = 0,25 ньютон-метров.
Это означает, что для удержания объекта в неподвижном положении, необходимо применить крутящий момент, равный 0,25 ньютон-метров. Чтобы переместить объект вверх, роботу необходимо приложить к нему крутящий момент, значение которого будет превышать 0,25 ньютон-метров, так как необходимо преодолеть силу гравитации. Чем больше крутящий момент робота, тем больше силы он прикладывает к объекту, тем больше ускорение объекта, и тем быстрее рука поднимет объект.
Для данных примеров, мы можем рассчитать крутящий момент, необходимый для подъем этих объектов.
Пример 7.2 – Крутящий момент = Сила х Расстояние = 1 ньютон х 0,125 метра = 0,125 ньютон-метров.
Для данного примера, длина рука равна половине длины руки из Примера 1, поэтому значение требуемого крутящего момента также в два раза меньше. Значение длины руки пропорционально значению требуемого крутящего момента. При равных исходных характеристиках объекта, чем короче рука, тем меньший крутящий момент необходим для подъема.
Пример 7.3 – Крутящий момент = Сила * Расстояние = 1 ньютон х 0,5 метра = 0,5 ньютон-метров.
Для данного примера, длина рука равна удвоенной длине руки из Примера 1, поэтому значение требуемого крутящего момента также в два раза больше.
Еще одна точка зрения относительно ограниченного крутящего момента в соединении руки робота заключается в следующем: более короткая рука сможет поднять объект большей массы, чем более длинная рука; однако, для первой доступная высота подъема объекта будет меньше, чем для второй.
Эти примеры иллюстрируют руку робота, поднимающую объекты разной массы. Какова взаимосвязь с требуемым количеством крутящего момента?
Пример 4 – Крутящий момент = Сила х Расстояние = ½ ньютона х 0,25 метра = 0,125 ньютон-метров.
Пример 5 – Крутящий момент = Сила х Расстояние = 2 ньютона х 0,25 метра = 0,5 ньютон-метров.
Эти примеры иллюстрируют уменьшение значения требуемого крутящего момента по мере снижения массы объекта. Масса пропорциональна крутящему моменту, необходимому для ее подъема. Чем тяжелее объект, тем больше крутящий момент, требуемый для его подъема.
Проектировщики роботов должны обратить внимание на ключевые взаимосвязи между значениями крутящего момента, длины руки и массы объекта.
РАБОТА – Мера силы, приложенной на расстоянии, называется работой. Например, для удерживания объекта необходимо 10 фунтов силы. Далее, чтобы поднять этот объект на высоту 10 дюймов, требуется определенное количество работы. Количество работы, требуемое для подъема объекта на высоту 20 дюймов, удваивается. Работа также понимается как изменение энергии.
МОЩНОСТЬ – Большинство людей полагает, что мощность является термином из области электрики, но мощность также относится и к механике.
Мощность – это количество работы в единицу времени. Насколько быстро кто-то может выполнить работу?
В робототехнике принято понимать мощность как ограничение, так как соревновательные робототехнические системы имеют ограничения в части выходной мощности. Если роботу требуется поднять массу в 2 ньютона (прилагая 2 ньютона силы), скорость подъема будет ограничиваться количеством выходной мощности робота. Если робот способен произвести достаточное количество мощности, он сможет быстро поднять объект. Если он способен произвести лишь малое количество энергии, подъем объекта будет производиться медленно (либо не будет производиться вообще!).
Мощность определяется как Сила, умноженная на Скорость (насколько быстро выполняется толчок при постоянной скорости), и обычно выражается в Ваттах.
Мощность [Ватты] = Сила [Ньютоны] х Скорость [Метры в секунду]
1 Ватт = 1 (Ньютон х Метр) / Секунда
Как это применяется в соревновательной робототехнике? К проектам роботов применяются определенные ограничения. Проектировщики соревновательных роботов, использующие систему проектирования VEX Robotics Design, также должны учитывать физические ограничения, связанные с применением электромоторов. Электромотор обладает ограниченной мощностью, поэтому он может производить только определенное количество работы с заданной скоростью.
Примечание: все перспективные концепции имеют базовое описание. Более глубоко обсуждать эти физические свойства учащиеся будут в процессе обучения в ВУЗах, если выберут область STEM в качестве направления обучения.
Расчет крутящего момента двигателя
Т.к. во всех цилиндрах двигателя величина и характер изменения крутящих моментов по углу поворота коленчатого вала одинаковые и отличаются лишь угловым интервалом, то для расчета ?Мкр достаточно построить кривую крутящего момента для одного цилиндра.
Средний крутящий момент двигателя, Н•м,
где F – площадь под графиком, заключенная между кривой ?Мкр.и линией ОА, мм;
ОА – длина интервала между величинами на диаграмме, мм;
mМ – масштаб моментов.
Действительный эффективный крутящий момент:
где – механический КПД двигателя, = 0,79
Рисунок 4. – Кривая крутящего момента для одного цилиндра
Уравновешивание
Центробежные силы инерции рассчитываемого двигателя и их моменты полностью уравновешены: и =0.
Силы инерции первого порядка и их моменты также уравновешены: ; .
Сила инерции второго порядка для всех цилиндров направлены в одну сторону:
Уравновешивание сил инерции второго порядка в рассчитываемом двигателе нецелесообразно, ибо применение двухвальной системы с противовесами для уравновешивания значительно усложнит конструкцию двигателя.
Моменты сил инерции второго порядка в связи с зеркальным расположением цилиндров полностью уравновешены: .
Равномерность крутящего момента и равномерность хода двигателя
Равномерность крутящего момента
Избыточная работа крутящего момента
где – площадь над прямой среднего крутящего момента, мм 2 ;
– масштаб угла поворота вала на диаграмме Мкр,
Момент инерции движущихся масс двигателя, приведенных к оси коленчатого вала:
где – равномерность хода двигателя, =0,02.
Описание конструктивного узла (ГРМ), требования, предъявляемые к нему и тенденции его развития, расчет ГРМ двигателя
Общие сведения о ГРМ
Газораспределение или газообмен, являясь неотъемлемой частью действительного (рабочего) цикла ДВС, служит для управления процессами впуска в цилиндры двигателя свежего заряда (горючей смеси или воздуха) и выпуска отработавших газов в соответствии с принятым для двигателя порядком работы.
Для реализации процессов газообмена впускные и выпускные отверстия цилиндров должны открываться и закрываться, с заданной закономерностью, с помощью специальных запирающих элементов (клапаны, золотники), кинематически связанных с коленчатым валом.
Совокупность этих элементов, деталей передачи движения с ними, управления ими и привода образуют газораспределительный механизм (ГРМ).
Важные функции ГРМ состоят еще в том, чтобы надежно уплотнять впускные и выпускные отверстия цилиндров, а также способствовать лучшей очистке цилиндров и обеспечивать хорошее наполнение их свежим зарядом.
В зависимости от конструкции запирающих элементов ГРМ, в настоящее время, существует три способа газораспределения: клапанное, золотниковое и комбинированное.
Клапанное газораспределение получило преобладающее применение в четырехтактных автомобильных ДВС. Остальные способы газораспределения реализованы в двухтактных ДВС, в частности, золотниковое газораспределение – в ДВС малой мощности (мотоциклетные и др.), комбинированное (клапанно-золотниковое) газораспределение – в ДВС большой мощности (тепловозные, судовые).
Важнейшей характеристикой любого способа газообмена, является круговая диаграмма фаз газораспределения (рисунок 13), отражающая продолжительность открытия впускных или выпускных отверстий цилиндра в градусах угла поворота коленчатого вала относительно мертвых точек. В зависимости от назначения отверстий, соединяющих цилиндровую полость двигателя с впускным или выпускным трубопроводами, различают фазы впуска (продувки) и выпуска. Величину фаз выбирают сообразно с тактностью двигателя, особенностями его конструкции и быстроходностью. Правильность выбора фаз газораспределения для каждой конкретной модели двигателя уточняют экспериментально при доводке двигателя на стенде.
Рисунок 5. – Диаграмма фаз газораспределения (а) и подъема клапана (б) четырехтактного двигателя, характеризующая изменение проходного сечения впускного отверстия по углу поворота коленчатого вала
Клапанное газораспределение имеет следующие преимущества:
малая стоимость изготовления и ремонта;
хорошее уплотнение камеры сгорания;
хорошая эксплуатационная надежность.
К недостаткам клапанного газораспределения следует отнести:
не обеспечивает желаемого (в идеале мгновенного) открытия и закрытия впускных и выпускных отверстий цилиндров, а изменяет их проходное сечение, как показано, например, на рисунке 13, б, пропорционально высоте подъема клапана с увеличением до максимального значения и последующего уменьшения до полного закрытия.
Однако последний недостаток сводится к минимуму за счет расширения фаз впуска и выпуска, как показано на рисунок 13, а. В четырехтактных ДВС такты впуска и выпуска осуществляют за 180° угла поворота коленчатого вала. Однако из-за газодинамических сопротивлений впускной и выпускной систем, инерционности газовых потоков, дросселирующего действия впускных и выпускных отверстий цилиндров, продолжительность процессов впуска и выпуска должна быть существенно большая. Так, общая продолжительность фаз впуска и выпуска в автомобильных двигателях (рисунок 13, а) достигает 230…300° вследствие развитых углов опережения открытия клапанов: впускного за (p o Bn=10. 30 o до в.м.т., выпускного за ф°Вып =40…70° до н.м.т.; и запаздывания закрытия клапанов: впускного за ф 3 вп=40. 80° после н.м.т., выпускного за ф 3 Вып=10. 50° после в.м.т.
Открытие впускного клапана с небольшим углом опережения требуется для:
приоткрытие клапана к моменту прихода поршня в в.м.т. с целью увеличения эффективного проходного сечения щели между клапаном и седлом.
использования инжекционного действия потока отработавших газов, выходящих с большой скоростью через открытый выпускной клапан, для подсасывания свежего заряда с целью продувки цилиндров.
Угол опережения выбирается небольшим во избежание потерь топлива при продувке цилиндров (для ДВС с внешним смесеобразованием) и обратного выброса свежего заряда во впускную систему.
Закрытие впускного клапана с большим углом запаздывания требуется для использования инерционности и скоростного напора свежего заряда, поступающего в цилиндр в конце впуска с большой скоростью, с целью дополнительного наполнения цилиндров (дозарядки);
К примеру, на номинальном режиме работы ДВС дозарядка цилиндров составляет 10… 15% от свежей горючей смеси или воздуха, потребляемых двигателем.
Открытие выпускного клапана с большим углом опережения требуется для:
– приоткрытия клапана к моменту прихода поршня в н.м.т. с целью увеличения эффективного проходного сечения щели между клапаном и седлом;
– лучшей очистки цилиндров за счет свободного истечения газов под избыточным давлением. К этому моменту газы в цилиндре имеют давление около 0,4…0,5 МПа и истекают в атмосферу с большой скоростью, равной скорости при критическом перепаде давлений. Считают, что за эту первую фазу выпуска из цилиндра выбрасывается примерно 60…70% всех отработавших газов и только 20…30% их удаляется при последующем ходе поршня от н.м.т. к в.м.т., когда осуществляется вторая фаза выпуска. Если выпускной клапан открывать в момент нахождения поршня в н м. т., то все отработавшие газы пришлось бы удалять из цилиндра при движении поршня к в.м.т. и затрачивать на это большую работу.
Закрытие выпускного клапана с небольшим углом запаздывания требуется для использования инерционности и скоростного потока отработавших газов с целью дополнительной очистки и продувки цилиндров свежим зарядом. Положение, когда поршень находится вблизи в.м.т. и оба клапана одновременно приоткрыты, называют перекрытием клапанов, которое достигает 30…40° угла поворота коленчатого вала.
Крутящий момент двигателя
Механизмы, узлы или детали автомобиля, все вместе и каждый по отдельности, безусловно важны, но основным элементом конструкции конечно же является двигатель. Анализ технических характеристик этого генератора движущей силы позволяет судить о том, насколько быстро авто набирает определенную скорость, как изменяются его тяговые и динамические возможности при увеличении его массы, езде в сложных дорожных условиях.
Базовые параметры двигателей внутреннего сгорания, бензиновых или дизельных, которые устанавливаются на абсолютное большинство современных легковых автомобилей, можно условно разбить на две группы.
Конструктивно заданные характеристики закладываются при проектировании и в процессе производства силового агрегата, являются неизменными в процессе эксплуатации:
- тип двигателя (бензиновый или дизельный);
- рабочий объем;
- степень сжатия топливовоздушной смеси.
Показателями, характеризующими работу мотора или так называемыми рабочими параметрами, являются:
- мощность;
- крутящий момент;
- удельный расход топлива.
Наибольший интерес вызывают параметры, от которых напрямую зависят динамические свойства автомобиля – это мощность и крутящий момент двигателя. Что же из себя представляют эти характеристики?
Что такое мощность двигателя
В официальных описаниях технических характеристик силовых агрегатов, параллельно с указанием мощности, обязательно приводится значение крутящего момента. Понятие мощности двигателя и понимание этого параметра, как правило, не вызывает сложностей – это физическая величина, характеризующая работу двигателя, выполняемую за единицу времени. То есть, мощность показывает, как быстро сможет автомобиль, имеющий определенную массу, преодолеть заданное расстояние. Чем больше мощность, тем больше максимальная скорость при неизменной снаряженной массе.
Мощность измеряется в ваттах или киловаттах (кВт), а также в лошадиных силах. Стоит отметить, что «лошадиная сила» – это внесистемная единица измерения (1 лошадиная сила = 735,5 Вт или 1 кВт = 1,36 л. с.).
Что такое крутящий момент двигателя
Несколько по-иному обстоит ситуация с пониманием крутящего момента, но, зная основные законы физики и базовое устройство силового агрегата, можно без труда прояснить это понятие. Крутящий момент двигателя – это качественный показатель, характеризующий силу вращения коленчатого вала. Этот параметр рассчитывается как произведение силы, приложенной к поршню, на плечо (расстояние от центральной оси вращения коленчатого вала до места крепления поршня (шатунной шейки)). Крутящий момент измеряется в ньютонах на метр (Нм).
Крутящий момент на коленчатом валу, как следует из вышеприведенной формулы, зависит от силы давления газов на поршень, а также от рабочего объема двигателя и степени сжатия топливной смеси в цилиндрах. Кстати сказать, значительно более высокий крутящий момент дизельных двигателей, по сравнению с аналогичными по объему бензиновыми моторами, объясняется чрезвычайно высокой степенью сжатия смеси дизельного топлива и воздуха в камерах сгорания (бензиновые — примерно 10:1, дизельные – около 20:1).
Высокий крутящий момент двигателя обеспечивает автомобилю отличную динамику разгона уже при низких оборотах вращения коленчатого вала, существенно увеличивает тяговые характеристики силового агрегата – повышает грузоподъемность авто и его проходимость.
Максимальное значение крутящего момента двигатель внутреннего сгорания достигает при определенных оборотах. У бензиновых моторов этот показатель более высокий, чем у «дизелей».
Мощность или крутящий момент — что важнее?
Если провести сравнительную оценку двух рабочих характеристик двигателя – мощности и крутящего момента, то очевидными становятся следующие факты:
- крутящий момент на коленчатом валу – основной параметр, характеризующий работу силового агрегата;
- мощность двигателя – это вторичная рабочая характеристика мотора, которая, по своей сути, является производной крутящего момента;
- зависимость мощности от крутящего момента выражается отношением: Р = М*n, где Р – мощность, М – крутящий момент, n – количество оборотов коленчатого вала в минуту;
- мощность двигателя линейно зависима от частоты вращения коленчатого вала: чем выше обороты, тем больше мощность мотора (естественно, до определенных пределов);
- крутящий момент также увеличивается при повышении оборотов двигателя, но достигнув своего максимального значения (при определенной частоте вращения коленчатого вала), его показатели снижаются, независимо от дальнейшего увеличения оборотов (график зависимости крутящего момента от частоты вращения двигателя имеет вид перевернутой параболы).
Некоторые выводы
- При оценке эксплуатационных параметров автомобиля и непосредственно рабочих характеристик его двигателя, величина крутящего момента обладает большим приоритетом, чем мощность.
- Среди силовых агрегатов, имеющих схожие конструктивные и рабочие параметры, предпочтительнее выглядят те, у которых крутящий момент больше.
- Для обеспечения наилучшей динамики разгона автомобиля и обеспечения оптимальных тяговых свойств двигателя, частоту вращения коленчатого вала нужно поддерживать в том диапазоне значений, при которых крутящий момент достигает своих пиковых показателей.
Изменение крутящего момента и динамика автомобиля
Чтобы обеспечить наилучшие динамические характеристики, автопроизводители стремятся устанавливать на автомобили силовые агрегаты, обладающие максимальным крутящим моментом в более широком диапазоне оборотов двигателя. Высокий крутящий момент характерен для дизельных силовых агрегатов, а также многоцилиндровых и турбированных моторов.
Чтобы правильно оценивать роль мощности и крутящего момента в формировании динамических характеристик автомобиля, нужно уяснить следующие факты:
- автомобиль с более мощным, но не обладающим достаточным крутящим моментом двигателем, будет уступать в разгонной динамике авто с высоким крутящим моментом;
- высокий крутящий момент, «подхватываемый» двигателем на низких оборотах, позволяет автомобилю ускоряться значительно эффективней;
- максимально возможная скорость автомобиля напрямую зависит от мощности двигателя, а крутящий момент не влияет на этот показатель: автомобили, обладающие огромным крутящим моментом, могут развивать весьма скромную максимальную скорость; пример: спортивные болиды (небольшой крутящий момент на карданном валу и высокая скорость) или тяжелые внедорожники (внушительный крутящий момент и невысокая максимальная скорость).
Независимо от мощности двигателя, разгонная динамика автомобиля, а также его способность «резво» преодолевать подъемы всецело зависят от величины максимального крутящего момента. Чем больший крутящий момент передается на ведущие колеса и чем шире диапазон оборотов двигателя, в котором он достигается, тем увереннее авто ускоряется и преодолевает сложные участки дороги.
Стоит заметить, что сравнение характеристик конструкционно идентичных, но имеющих разные крутящие моменты двигателей, имеет смысл только при одинаковых параметрах трансмиссии; коробки переключения передач должны обладать схожими передаточными отношениями. В противном случае, сравнивать крутящие моменты двигателей не имеет практического смысла.