Mbmsystems.ru

Как рассчитать пусковой ток двигателя?

Что такое пусковой ток электродвигателя

На электродвигателях есть табличка, в которой указаны основные технические характеристики агрегата: мощность, частота вращения и т. д. Однако производители не говорят о таком параметре, как пусковой ток. Это важная характеристика, которая оказывает существенное влияние на работу силового агрегата. Хороший электрик должен уметь определять этот показатель, и знать, что делать с полученными значениями.

Определение понятия

Пусковой ток двигателя – электроток, потребляемый силовым агрегатом в момент старта. Его показатель в несколько раз превышает значение номинального тока и при выборе оборудования крайне важно учитывать этот параметр. Здесь уместно сравнение с автомобилем, при разгоне которого тратится значительно больше топлива в сравнении с движением при постоянной скорости. Это явление характерно для различного электрооборудования:

  • Погружные насосы – отличаются самым тяжелым стартом, и их пусковой электроток может превышать номинальный в 9 раз.
  • Холодильники – при запуске сила тока превышает номинальный в 3,33 раза.
  • Микроволновые печи – показатель пускового электротока в 2 раза выше номинального значения.

Это связано с тем, что в момент включения электродвигателя в его обмотке создается сильное магнитное поле, необходимое для раскручивания ротора. Именно поэтому показатель электротока пуска значительно превышает номинальное значение. На его значение оказывают влияние различные факторы:

  • Наличие нагрузки на валу силового агрегата.
  • Скорость вращения.
  • Схема подключения и т. д.

Особенности расчета

Определение значения пускового тока электродвигателя проводится в два этапа. Сначала необходимо рассчитать номинальный электроток, для этого используется следующая формула:

Затем можно переходить к определению показателя тока пуска, используя формулу:

Зная это значение, можно легко подобрать выключатели-автоматы, обеспечивая тем самым надежную защиту линии включения. В паспорте электродвигателей указано значение силы тока при номинальной нагрузке на валу силового агрегата. Например, если на моторе присутствует надпись 13,8/8 А, то при его включении в сеть на 220 В и номинальной нагрузке, сила тока будет составлять13,8 А. Когда он подсоединен к сети 380 В, то ток составит 8 А.

Если известна номинальная мощность силового агрегата, можно легко выяснить и его номинальный ток. Для этого предстоит воспользоваться формулой:

Иногда коэффициент мощности мотора может оказаться неизвестным. В такой ситуации стоит воспользоваться простым соотношением – 2 А/1 кВт.

Например, если показатель номинальной мощности мотора составляет 15 кВт, то он будет потреблять около 30 А. Погрешность при таком расчете минимальна.

Практическое применение

Силовые приводы будут эксплуатироваться правильно только в том случае, если при их выборе были учтены пусковые характеристики.

Высокий стартовый ток представляет серьезную опасность для электрооборудования. Если не принимать мер по его ограничению, возможны серьезные проблемы.

Ток пуска может повредить не только сам мотор, но и другое электрооборудование, установленное с ним на одной линии. Для решения поставленной задачи можно использовать следующие методы:

  • Производить запуск силового агрегата на холостом ходу – нагрузка прикладывается только после перехода мотора в рабочий режим.
  • При подключении использовать схему треугольник-звезда.
  • Применять автотрансформаторный пуск – напряжение на двигатель подается через автотрансформатор, что позволяет добиться плавного повышения силы тока.
  • Использовать пусковые резисторы.
  • Применение частотных регуляторов и тиристорных устройств плавного запуска.

С помощью устройств плавного пуска, основанных на тиристорах, можно снизить показатель электротока пуска в два раза. При этом они могут работать как с асинхронными, так и синхронными электромоторами. В случае с трехфазными асинхронными двигателями, широкое распространение получили преобразователи частоты. Они позволяют изменять частоту электротока, обеспечивая не только плавный старт мотора, но и частоту вращения его ротора. Это эффективные устройства, но с высокой стоимостью. Следует помнить, что частотные преобразователи создают в сети помехи, устранить которые поможет сетевой фильтр.

Также можно использовать схему пуска силового агрегата с переключением обмоток со звезды на треугольник.

Для решения поставленной задачи часто применяются реле времени. Однако следует помнить, что этот способ подходит не для всех электромоторов.

Например, этот метод не применяется при подключении асинхронных электромоторов, рассчитанных на напряжение 220-380 В.

Сейчас на рынке появились более современные устройства – софт-стартеры. Они основаны на микропроцессорах и весьма эффективны. Единственным недостатком этих устройств может считаться лишь высокая стоимость.

Как правильно подобрать электродвигатель по типу, мощности и другим параметрам

Электродвигатель — механизм, преобразующий энергию электрического тока в кинетическую энергию. Современное производство и быт сложно представить без машин с электроприводом. Они используются в насосном оборудовании, системах вентиляции и кондиционирования, в электротранспорте, промышленных станках различных типов и т.д.

При выборе электродвигателя необходимо руководствоваться несколькими основными критериями:

  • вид электрического тока, питающего оборудование;
  • мощность электродвигателя;
  • режим работы;
  • климатические условия и другие внешние факторы.

Типы двигателей

Электродвигатели постоянного и переменного тока

В зависимости от используемого электрического тока двигатели делятся на две группы:

  • приводы постоянного тока;
  • приводы переменного тока.

Электродвигатели постоянного тока сегодня применяются не так часто, как раньше. Их практически вытеснили асинхронные двигатели с короткозамкнутым ротором.

Читать еще:  Где установить электроподогреватель двигателя?

Главный недостаток электродвигателей постоянного тока — возможность эксплуатации исключительно при наличии источника постоянного тока или преобразователя переменного напряжения в постоянный ток. В современном промышленном производстве обеспечение данного условия требует дополнительных финансовых затрат.

Тем не менее, при существенных недостатках этот тип двигателей отличается высоким пусковым моментом и стабильной работой в условиях больших перегрузок. Приводы данного типа чаще всего применяются в металлургии и станкостроении, устанавливаются на электротранспорт.

Принцип работы электродвигателей переменного тока построен на электромагнитной индукции, возникающей в процессе движения проводящей среды в магнитном поле. Для создания магнитного поля используются обмотки, обтекаемые токами, либо постоянные магниты.

Электродвигатели переменного тока подразделяются на синхронные и асинхронные. У каждой подгруппы есть свои конструктивные и эксплуатационные особенности.

Синхронные электродвигатели

Синхронные двигатели — оптимальное решение для оборудования с постоянной скоростью работы: генераторов постоянного тока, компрессоров, насосов и др.

Технические характеристики синхронных электродвигателей разных моделей отличаются. Скорость вращения колеблется в диапазоне от 125 до 1000 оборотов/мин, мощность может достигать 10 тысяч кВт.

В конструкции приводов предусмотрена короткозамкнутая обмотка на роторе. Ее наличие позволяет осуществлять асинхронный пуск двигателя. К преимуществам оборудования данного типа относятся высокий КПД и небольшие габариты. Эксплуатация синхронных электродвигателей позволяет сократить потери электричества в сети до минимума.

Асинхронные электродвигатели

Асинхронные электродвигатели переменного тока получили наибольшее распространение в промышленном производстве. Особенностью данных приводов является более высокая частота вращения магнитного поля по сравнению со скоростью вращения ротора.

В современных двигателях для изготовления ротора используется алюминий. Легкий вес этого материала позволяет уменьшить массу электродвигателя, сократить себестоимость его производства.

КПД асинхронного двигателя падает почти вдвое при эксплуатации в режиме низких нагрузок — до 30-50 процентов от номинального показателя. Еще один недостаток таких электроприводов состоит в том, что параметры пускового тока почти втрое превышают рабочие показатели. Для уменьшения пускового тока асинхронного двигателя используются частотные преобразователи или устройства плавного пуска.

Асинхронные электродвигатели удовлетворяют требованиям разных промышленных применений:

  • Для лифтов и другого оборудования, требующего ступенчатого изменения скорости, выпускаются многоскоростные асинхронные приводы.
  • При эксплуатации лебедок и металлообрабатывающих станков используются электродвигатели с электромагнитной тормозной системой. Это обусловлено необходимостью остановки привода и фиксации вала при перебоях напряжения или его исчезновения.
  • В процессах с пульсирующей нагрузкой или при повторно-кратковременных режимах могут использоваться асинхронные электродвигатели с повышенными параметрами скольжения.

Вентильные электродвигатели

Группа вентильных электродвигателей включает в себя приводы, в которых регулирование режима эксплуатации осуществляется посредством вентильных преобразователей.

К преимуществам данного оборудования относятся:

  • Высокий эксплуатационный ресурс.
  • Простота обслуживания за счет бесконтактного управления.
  • Высокая перегрузочная способность, которая в пять раз превышает пусковой момент.
  • Широкий диапазон регулирования частоты вращения, который почти вдвое выше диапазона асинхронных электродвигателей.
  • Высокий КПД при любой нагрузке – более 90 процентов.
  • Небольшие габариты.
  • Быстрая окупаемость.

Мощность электродвигателя

В режиме постоянной или незначительно изменяющейся нагрузки работает большое количество механизмов: вентиляторы, компрессоры, насосы, другая техника. При выборе электродвигателя необходимо ориентироваться на потребляемую оборудованием мощность.

Определить мощность можно расчетным путем, используя формулы и коэффициенты, приведенные ниже.

Мощность на валу электродвигателя определяется по следующей формуле:

где:
Рм — потребляемая механизмом мощность;
ηп — КПД передачи.

Номинальную мощность электродвигателя желательно выбирать больше расчетного значения.

Формула расчета мощности электродвигателя для насоса

где:
K3 — коэффициента запаса, он равен 1,1-1,3;
g — ускорение свободного падения;
Q — производительность насоса;
H — высота подъема (расчетная);
Y — плотность перекачиваемой насосом жидкости;
ηнас — КПД насоса;
ηп — КПД передачи.

Давление насоса рассчитывается по формуле:

Формула расчета мощности электродвигателя для компрессора

Мощность поршневого компрессора легко рассчитать по следующей формуле:

где:
Q — производительность компрессора;
ηk — индикаторный КПД поршневого компрессора (0,6-0,8);
ηп — КПД передачи (0,9-0,95);
K3 — коэффициент запаса (1,05 -1,15).

Значение A можно рассчитать по формуле:

или взять из таблицы

Формула расчета мощности электродвигателя для вентиляторов

где:
K3 — коэффициент запаса.
Его значения зависят от мощности двигателя:

  • до 1 кВт — коэффициент 2;
  • от 1 до 2 кВт — коэффициент 1,5;
  • 5 и более кВт — коэффициент 1,1-1,2.

Q — производительность вентилятора;
H — давление на выходе;
ηв — КПД вентилятора;
ηп — КПД передачи.

Приведенная формула используется для расчета мощности осевых и центробежных вентиляторов. КПД центробежных моделей равен 0,4-0,7, а осевых вентиляторов — 0,5-0,85.

Остальные технические характеристики, необходимые для расчета мощности двигателя, можно найти в каталогах для каждого типа механизмов.

Важно! При выборе электродвигателя запас мощности должен быть, но небольшой. При значительном запасе мощности снижается КПД привода. В электродвигателях переменного тока это приводит еще и к снижению коэффициента мощности.

Пусковой ток электродвигателя

Зная тип и номинальную мощность электродвигателя, можно рассчитать номинальный ток.

Читать еще:  Влияют ли свечи на мощность двигателя?

Номинальный ток электродвигателей постоянного тока

Номинальный ток трехфазных электродвигателей переменного тока

где:
PH — номинальная мощность электродвигателя;
UH — номинальное напряжение электродвигателя,
ηH — КПД электродвигателя;
cos φ H — коэффициент мощности электродвигателя.

Номинальные значения мощности, напряжения и КПД можно найти в технической документации на конкретную модель электродвигателя.

Зная значение номинального тока, можно рассчитать пусковой ток.

Формула расчета пускового тока электродвигателей

где:
IH — номинальное значение тока;
Кп — кратность постоянного тока к номинальному значению.

Пусковой ток необходимо рассчитывать для каждого двигателя в цепи. Зная эту величину, легче подобрать тип автоматического выключателя для защиты всей цепи.

Режимы работы электродвигателей

Режим работы определяет нагрузку на электродвигатель. В некоторых случаях она остается практически неизменной, в других может изменяться. Характер предполагаемой нагрузки обязательно учитывается при выборе двигателя. Действующими стандартами предусмотрены следующие режимы эксплуатации:

Режим S1 (продолжительный). При таком режиме эксплуатации нагрузка остается постоянной в течение всего времени, пока температура электродвигателя не достигнет необходимого значения. Мощность привода рассчитывается по формулам, приведенным выше.

Режим S2 (кратковременный). При эксплуатации в этом режиме температура двигателя в период его включения не достигает установившегося значения. За время отключения электродвигатель охлаждается до температуры окружающей среды. При кратковременном режиме эксплуатации необходимо проверять перегрузочную способность электропривода.

Режим S3 (периодически-кратковременный). Электродвигатель работает с периодическими отключениями. В периоды включения и отключения его температура не успевает достигнуть заданного значения или охладиться до температуры окружающей среды. При расчете мощности двигателя обязательно учитывается продолжительность пауз и потерь в переходные периоды. При выборе электродвигателя важным параметром является допустимое количество включений за единицу времени.

Режимы S4 (периодически-кратковременный, с частыми пусками) и S5 (периодически-кратковременный с электрическим торможением). В обоих случаях работа двигателя рассматривается по тем же параметрам, что и в режиме эксплуатации S3.

Режим S6 (периодически-непрерывный с кратковременной нагрузкой). Работа электродвигателя в данном режиме предусматривает эксплуатацию под нагрузкой, чередующуюся с холостым ходом.

Режим S7 (периодически-непрерывный с электрическим торможением)

Режим S8 (периодически-непрерывный с одновременным изменением нагрузки и частоты вращения)

Режим S9 (режим с непериодическим изменением нагрузки и частоты вращения)

Большинство моделей современных электроприводов, эксплуатируемых продолжительное время, адаптированы к изменяющемуся уровню нагрузки.

Климатические исполнения электродвигателей

При выборе электродвигателя учитываются не только его технические характеристики, но и условия окружающей среды, в которых он будет эксплуатироваться.

Современные электроприводы выпускаются в разных климатических исполнениях. Категории маркируются соответствующими буквами и цифрами:

  • У — модели для эксплуатации в умеренном климате;
  • ХЛ — электродвигатели, адаптированные к холодному климату;
  • ТС — исполнения для сухого тропического климата;
  • ТВ — исполнения для влажного тропического климата;
  • Т — универсальные исполнения для тропического климата;
  • О — электродвигатели для эксплуатации на суше;
  • М — двигатели для работы в морском климате (холодном и умеренном);
  • В — модели, которые могут использоваться в любых зонах на суше и на море.

Цифры в номенклатуре модели указывают на тип ее размещения:

  • 1 — возможность эксплуатации на открытых площадках;
  • 2 — установка в помещениях со свободным доступом воздуха;
  • 3 — эксплуатация в закрытых цехах и помещениях;
  • 4 — использование в производственных и других помещениях с возможностью регулирования климатических условий (наличие вентиляции, отопления);
  • 5 — исполнения, разработанные для эксплуатации в зонах повышенной влажности, с высоким образованием конденсата.

Энергоэффективность

Рациональное потребление энергии при сохраняющейся высокой мощности сокращает текущие производственные затраты при одновременном увеличении производительности электродвигателя. Поэтому при выборе привода обязательно учитывается класс энергоэффективности.

В технической документации и каталогах обязательно указывается класс энергоэффективности двигателя. Он зависит от показателя КПД.

Проводимые в тестовом и рабочем режимах экспериментальные исследования показывают, что электродвигатель мощностью 55 кВт высокого класса энергоэффективности сокращает потребление электроэнергии на 8-10 тысяч кВт ежегодно.

Источник: Компания «Техпривод»

Как рассчитать пусковой ток двигателя?

Вы хотите, чтобы стабилизатор напряжения, источник бесперебойного питания или генератор служили безотказно? Тогда эта статья будет для вас полезна.

Одна из основных характеристик бытовых приборов — электрическая мощность на выходе. Она отражает возможность питания подключённой нагрузки. Для правильного выбора стабилизатора напряжения переменного тока, ИБП или генератора нужно знать мощность устройства. Для ее расчета следует подсчитать сумму электрической мощности всех приборов, которые могут быть единовременно подключены.

Одно из основных условий долгой и стабильной работы стабилизатора, генератора и ИБП: мощность техники не должна превышать их возможности по выходной мощности. Лучше, чтобы суммарная электрическая мощность электроприборов, которые функционируют одновременно, была на 20 % меньше выходной мощности питающего прибора. Чем меньше стабилизатор или ИБП работает с перегрузкой, тем дольше он служит.

В расчете суммарной мощности и состоит основная трудность. В паспорте любого устройства указана мощность в кВт. Вроде бы всё просто: нужно сложить мощность приборов. Но в этом кроется основная ошибка. Приборы, в конструкции которых есть электродвигатели, насосы или компрессоры, в момент запуска дают нагрузку на сеть, превышающую номинал в Такое явление обусловлено наличием пусковых токов. Это же правило относится к приборам, в состав которых входят инерционные компоненты или элементы, физические свойства которых в момент запуска отличаются от их обычных значений при эксплуатации. Классический пример — изменение сопротивления у обыкновенной лампы накаливания. В конструкции таких ламп есть вольфрамовая нить, при включении электрическое сопротивление вольфрама меньше (нить холодная), чем при работе. Сопротивление увеличивается с ростом температуры, следовательно, при включении лампы её мощность намного больше, чем во время работы. При включении лампы накаливания присутствуют пусковые токи.

Читать еще:  Что такое максимальный крутящий момент двигателя?

Мощность любого прибора рассчитается как произведение напряжения (в вольтах) и силы тока (в амперах). По мере увеличения силы тока растет мощность, а значит, возрастает нагрузка на стабилизатор, генератор и источник питания. Определение пусковых токов можно сформулировать так: электроприборы или их элементы, имеющие инерционные свойства, в момент запуска дают большую нагрузку на электрическую сеть или питающий прибор, чем в процессе работы.

Значение пусковых токов зависит не только от усилия по раскрутке ротора двигателя или насоса до номинальных оборотов, но и от изменения сопротивления проводника. Чем меньше сопротивление, тем больше величина силы тока, который может протекать по нему. При нагреве уменьшается сопротивление и снижается возможность проводника пропускать большие токи.

Помимо вращающего момента и электросопротивления дополнительную электрическую мощность в момент старта прибору придаёт индуктивная мощность. В момент включения люминесцентной лампы у индуктивной катушки сопротивление мало. Также действует мощность для поджига разряда, что увеличивает силу тока.

Влияние пусковых токов особенно важно для стабилизаторов напряжения и источников бесперебойного питания on-line типа. Стабилизаторы работают в одном из двух режимов работы: номинальном или предельном.

В номинальном режиме работы сохраняется мощность, но при ухудшении качества электроснабжения в сети наблюдается очень низкое или, напротив, очень высокое напряжение. В таком случае стабилизатор переходит в предельный режим работы, его выходная мощность снижается примерно на 30 %. Если при этом происходит перегрузка по пусковым токам, то он выключится, сработает система защиты. Если это будет повторяться часто, срок службы качественного стабилизатора будет небольшим (что уж говорить о китайской технике).

С ИБП типа on-line дела обстоят сложнее. Если на такой прибор дается нагрузка, превышающая номинальную (а у пусковых токов очень большая скорость, и они проходят любую защиту), предохранители не успевают сработать, и источник питания может сгореть. Это негарантийный случай и ремонт будет стоить значительных средств.

Единственный вид ИБП, который может выдерживать пусковые токи, в раза превышающие номинал, — системы резервного электропитания линейно-интерактивного типа. Максимальные пусковые токи дают компрессоры холодильников (однокамерные — до 1 кВт, двухкамерные — до 1,8 кВт), а также глубинные насосы. Их мощность во время запуска превышает номинал в Самый маленький коэффициент запуска (равный 2) отмечается у насосов Grundfos с системой плавного пуска.

При выборе источников электроснабжения или стабилизатора напряжения нужно учитывать временной фактор влияния пусковых токов. При первом включении стабилизатора или генератора все электроприборы начнут работу одновременно и суммарная нагрузка будет большая. При дальнейшей работе потребитель должен оценить вероятность одновременного запуска приборов с большими пусковыми токами (к примеру, холодильника, насоса и стиральной машины). Если стабилизатор или ИБП имеет небольшую мощность, то следует самостоятельно контролировать включение техники с пусковыми токами.

Выводы:

  • При подсчёте суммарной мощности электротехники мощность приборов с пусковыми токами нужно рассчитывать не по номиналу, а с учётом пусковых токов (в Вт либо в А).
  • Пусковые токи даёт техника, в конструкции которой есть электродвигатель, насос, компрессор, нить накаливания или катушка индуктивности.
  • Чем хуже напряжение в магистральном проводе (ниже 150 В или выше 250 В), тем более высокий номинал должен быть у стабилизатора или ИБП (примерно на 30 % больше суммарной мощности работающей техники).

Пусковые токи можно ассоциировать с началом движения велосипеда: в момент начала движения нужно большое усилие, чтобы раскрутить колёса, но когда велосипед приходит в движение, требуется меньше сил для поддержания скорости.

Примеры номинальной мощности и мощности при запуске бытовой техники

Тип техники Номинальная мощность, Вт Продолжительность пусковых токов, с Коэффициент во время начала работы Пример модели стабилизатора, ВА Пример модели ИБП
Холодильник 4 3 «Штиль» R1200 / Progress 1500T N-Power Pro-Vision Black M 3000 LT
Стиральная машина 2500 Progress 3000T
Микроволновая печь 1600 2 «Штиль» R2000
Кондиционер Progress 5000L
Пылесос 1500 2 Progress 3000T
Кухонный комбайн 7 Progress 2000T
Посудомоечная машина 2200 3 Progress 3000L
Погружные скважинные насосы, глубинные насосы 2 Progress 3000L ДПК-1/1-3-220-М
Циркуляционные насосы «Штиль» R 600 ST Inelt Intelligent 500LT2
Лампа накаливания 100 0,15 высокоточная серия L

В таблице не отражены точные значения электрических приборов, предоставлены лишь ориентировочные цифры для понимания алгоритма выбора стабилизатора напряжения и ИБП.

Ссылка на основную публикацию
Adblock
detector