Mbmsystems.ru

Из чего состоит поршень двигателя?

Blog-Mycar.ru

Все о ремонте, тюнинге, устройстве, эксплуатации автомобиля, советы, автоновости, автофакты

Как работает поршневой двигатель внутреннего сгорания?

Самые известные и широко применяемые во всем мире механические устройства — это двигатели внутреннего сгорания (далее ДВС). Ассортимент их обширен, а отличаются они рядом особенностей, например, количеством цилиндров, число которых может варьироваться от 1 до 24, используемым топливом.

Работа поршневого двигателя внутреннего сгорания

Одноцилиндровый ДВС можно считать самым примитивным, несбалансированными и имеющими неравномерный ход, несмотря на то, что он является отправной точкой в создании многоцилиндровых двигателей нового поколения. На сегодняшний день они применяются в авиамоделировании, в производстве сельскохозяйственных, бытовых и садовых инструментов. Для автомобилестроения массово применяются четырехцилиндровые двигатели и более солидные аппараты.

Как функционирует и из чего состоит?

Поршневой двигатель внутреннего сгорания имеет сложное строение и состоит из:

  • Корпуса, включающего в себя блок цилиндров, головку блока цилиндров;
  • Газораспределительного механизма;
  • Кривошипно-шатунного механизма (далее КШМ);
  • Ряда вспомогательных систем.

КШМ является связующим звеном между энергией выделяемой при сгорании топливо-воздушной смеси (далее ТВС) в цилиндре и коленвалом, обеспечивающим движение автомобиля. Газораспределительная система отвечает за газообмен в процессе функционирования агрегата: доступ атмосферного кислорода и ТВС в двигатель, и своевременное выведение газов, образовавшихся во время горения.

Устройство простейшего поршневого двигателя

Вспомогательные системы представлены:

  • Впускной, обеспечивающей поступление кислорода в двигатель;
  • Топливной, представленной системой впрыска топлива;
  • Зажигание, обеспечивающее искру и воспламенение ТВС для двигателей, работающих на бензине (дизельные двигатели отличаются самовоспламенением смеси от высокой температуры);
  • Системой смазки, обеспечивающую уменьшение трения и износа соприкасающихся металлических деталей с помощью машинного масла;
  • Системой охлаждения, которая не допускает перегрева рабочих деталей двигателя, обеспечивая циркуляцию специальных жидкостей типа тосол;
  • Выпускной системой, обеспечивающей выведение газов в соответствующий механизм, состоящей из выпускных клапанов;
  • Системой управления, обеспечивающей наблюдение за функционирование ДВС на уровне электроники.

Основным рабочим элементом в описываемом узле считается поршень двигателя внутреннего сгорания, который и сам является сборной деталью.

Устройство поршня ДВС

Пошаговая схема функционирования

Работа ДВС основывается на энергии расширяющихся газов. Они являются результатом сгорания ТВС внутри механизма. Это физический процесс принуждает поршень к движению в цилиндре. Топливом в этом случае могут служить:

Работа двигателя — это непрерывный замкнутый цикл, состоящий из определенного количества тактов. Наиболее распространены ДВС двух видов, различающихся количеством тактов:

  1. Двухтактные, производящие сжатие и рабочий ход;
  2. Четырехтактные – характеризуются четырьмя одинаковыми по продолжительности этапами: впуск, сжатие, рабочий ход, и завершающий – выпуск, это свидетельствует о четырехкратном изменении положения основного рабочего элемента.

Начало такта определяется расположением поршня непосредственно в цилиндре:

  • Верхняя мертвая точка (далее ВМТ);
  • Нижняя мертвая точка (далее НМТ).

Изучая алгоритм работы четырехтактного образца можно досконально понять принцип работы двигателя автомобиля.

Принцип работы двигателя автомобиля

Впуск происходит путем прохождения из верхней мёртвой точки через всю полость цилиндра рабочего поршня с одновременным втягиванием ТВС. Основываясь на конструкционных особенностях, смешивание входящих газов может происходить:

  • В коллекторе впускной системы, это актуально, если двигатель бензиновый с распределенным или центральным впрыском;
  • В камере сгорания, если речь идет о дизельном двигателе, а также двигателе, работающем на бензине, но с непосредственным впрыском.

Первый такт проходит с открытыми клапанами впуска газораспределительного механизма. Количество клапанов впуска и выпуска, время их пребывания в открытом положении, их размер и состояние износа являются факторами, влияющими на мощность двигателя. Поршень на начальном этапе сжатия размещён в НМТ. Впоследствии он начинает перемещаться вверх и сжимать накопившуюся ТВС до размеров, определенных камерой сгорания. Камера сгорания – это свободное пространство в цилиндре, остающееся между его верхом и поршнем в верхней мертвой точке.

Второй такт предполагает закрытие всех клапанов двигателя. Плотность их прилегания напрямую влияет на качество сжатия ТВС и ее последующее возгорание. Также на качество сжатия ТВС оказывает большое влияние уровень износа комплектующих двигателя. Она выражается в размерах пространства между поршнем и цилиндром, в плотности прилегания клапанов. Уровень компрессии двигателя является главным фактором, оказывающим влияние на его мощность. Он измеряется специальным прибором компрессометром.

Читать еще:  Как определить литраж двигателя?

Рабочий ход начинается когда к процессу подключается система зажигания, генерирующая искру. Поршень при этом находится в максимальной верхней позиции. Смесь взрывается, выделяются газы, создающие повышенное давление, и поршень приводится в движение. Кривошипно-шатунного механизм в свою очередь активирует вращение коленвала, обеспечивающего движение автомобиль. Все клапаны систем в это время находятся в закрытом положении.

Выпускной такт является завершающим в рассматриваемом цикле. Все выпускные клапаны находятся в открытом положении, давая возможность двигателю «выдохнуть» продукты горения. Поршень возвращается в исходную точку и готов к началу нового цикла. Это движение способствует выведению в выпускную систему, а затем в окружающую среду, отработанных газов.

Схема работы двигателя внутреннего сгорания, как уже говорилось выше, основана на цикличности. Рассмотрев детально, как работает поршневой двигатель, можно резюмировать, что КПД такого механизма не более 60%. Обусловлен такой процент тем, что в отдельно взятый момент рабочий такт выполняется лишь в одном цилиндре.

Не вся энергия, полученная в это время, направлена на движение автомобиля. Часть её расходуется на поддержание в движении маховика, который по инерции обеспечивает работу автомобиля во время трех других тактов.

Некоторое количество тепловой энергии невольно тратится на нагревание корпуса и отработанных газов. Вот почему мощность двигателя автомобиля определяется количеством цилиндров, и как следствие, так называемым объемом двигателя, рассчитанным по определенной формуле как суммарный объем всех рабочих цилиндров.

Как устроен поршневой двигатель внутреннего сгорания

Большинство автомобилей заставляет перемещаться поршневой двигатель внутреннего сгорания (сокращённо ДВС) с кривошипно-шатунным механизмом. Такая конструкция получила массовое распространение в силу малой стоимости и технологичности производства, сравнительно небольших габаритов и веса.

По виду применяемого топлива ДВС можно разделить на бензиновые и дизельные. Надо сказать, что бензиновые двигатели великолепно работают на газе. Такое деление непосредственно сказывается на конструкции двигателя.

Как устроен поршневой двигатель внутреннего сгорания

Основа его конструкции — блок цилиндров. Это корпус, отлитый из чугуна, алюминиевого или иногда магниевого сплава. Большинство механизмов и деталей других систем двигателя крепятся именно к блоку цилиндров, или располагаются внутри его.

Другая крупная деталь двигателя, это его головка. Она находится в верхней части блока цилиндров. В головке также располагаются детали систем двигателя.

Снизу к блоку цилиндра крепится поддон. Если эта деталь воспринимает нагрузки при работе двигателя, её часто называют поддоном картера, или картером.

Все системы двигателя

  1. кривошипно-шатунный механизм;
  2. механизм газораспределения;
  3. система питания;
  4. система охлаждения;
  5. система смазки;
  6. система зажигания;
  7. система управления двигателем.

Кривошипно-шатунный механизм состоит из поршня, гильзы цилиндра, шатуна и коленчатого вала.

Кривошипно-шатунный механизм:
1. Расширитель маслосъёмного кольца. 2. Кольцо поршневое маслосъёмное. 3. Кольцо компрессионное, третье. 4. Кольцо компрессионное, второе. 5. Кольцо компрессионное, верхнее. 6. Поршень. 7. Кольцо стопорное. 8. Палец поршневой. 9. Втулка шатуна. 10. Шатун. 11. Крышка шатуна. 12. Вкладыш нижней головки шатуна. 13. Болт крышки шатуна, короткий. 14. Болт крышки шатуна, длинный. 15. Шестерня ведущая. 16. Заглушка масляного канала шатунной шейки. 17. Вкладыш подшипника коленчатого вала, верхний. 18. Венец зубчатый. 19. Болты. 20. Маховик. 21. Штифты. 22. Болты. 23. Маслоотражатель, задний. 24. Крышка заднего подшипника коленчатого вала. 25. Штифты. 26. Полукольцо упорного подшипника. 27. Вкладыш подшипника коленчатого вала, нижний. 28. Противовес коленчатого вала. 29. Винт. 30. Крышка подшипника коленчатого вала. 31. Болт стяжной. 32. Болт крепления крышки подшипника. 33. Вал коленчатый. 34. Противовес, передний. 35. Маслоотрожатель, передний. 36. Гайка замковая. 37. Шкив. 38. Болты.

Поршень расположен внутри гильзы цилиндра. При помощи поршневого пальца он соединен с шатуном, нижняя головка которого крепится к шатунной шейке коленчатого вала. Гильза цилиндра представляет собой отверстие в блоке, или чугунную втулку, вставляемую в блок.

Читать еще:  Как правильно прокачать топливную систему дизельного двигателя?

Гильза цилиндров с блоком

Гильза цилиндра сверху закрыта головкой. Коленчатый вал также крепится к блоку в нижней его части. Механизм преобразует прямолинейное движение поршня во вращательное движение коленчатого вала. То самое вращение, которое, в конечном счете, заставляет крутиться колеса автомобиля.

Газораспределительный механизм отвечает за подачу смеси паров топлива и воздуха в пространство над поршнем и удаление продуктов горения через клапаны, открываемые строго в определенный момент времени.

Система питания отвечает в первую очередь за приготовление горючей смеси нужного состава. Устройства системы хранят топливо, очищают его, смешивают с воздухом так, чтобы обеспечить приготовление смеси нужного состава и количества. Также система отвечает за удаление из двигателя продуктов горения топлива.

При работе двигателя образуется тепловая энергия в количестве большем, чем двигатель способен преобразовать в механическую энергию. К сожалению, так называемый термический коэффициент полезного действия, даже лучших образцов современных двигателей не превышает 40%. Поэтому приходится большое количество «лишней» теплоты рассеивать в окружающем пространстве. Именно этим и занимается система охлаждения, отводит тепло и поддерживает стабильную рабочую температуру двигателя.

Система смазки . Это как раз тот случай: «Не подмажешь, не поедешь». В двигателях внутреннего сгорания большое количество узлов трения и так называемых подшипников скольжения: есть отверстие, в нем вращается вал. Не будет смазки, от трения и перегрева узел выйдет из строя.

Система зажигания призвана поджечь, строго в определенный момент времени, смесь топлива и воздуха в пространстве над поршнем. У дизелей такой системы нет. Там топливо самовоспламеняется при определенных условиях.

Видео:

Система управления двигателем при помощи электронного блока управлении (ЭБУ) управляет системами двигателя и координирует их работу. В первую очередь это приготовление смеси нужного состава и своевременное поджигание её в цилиндрах двигателя.

Из чего состоит поршень двигателя?

Поршневая группа состоит из поршня в сборе, уплотнительных и маслосъемных колец, поршневого пальца. По конструктивным признакам различают поршни тронковые, для двигателей крейцкопфного типа и двустороннего действия.

Тронковые поршни соединяются с шатуном поршневым паль­цем. Для обеспечения газонепроницаемости полостей цилиндра поршень снабжают уплотнительными кольцами, а для предотвра­щения попадания масла в камеру сгорания — маслосъемными кольцами. Материалом для поршней служит чугун марок СЧ24-44 и СЧ28-48 и сталь. Поршни небольшого диаметра быстроходных двигателей можно изготовлять из алюминиевых сплавов (АЛ1, АЛ2, АК2, АК4). Такие поршни имеют малый вес и небольшие температурные напряжения в днище; недостатки поршней — не­значительная износостойкость и большой коэффициент теплового линейного расширения.

Поршень (рис. 139) состоит из нижней направляющей части — тройка или юбки 1 и верхней части — головки поршня 3 с поршне­выми кольцами 2. Конфигурация камеры сгорания двигателя, тип продувки, расположение в крышке клапанов и форсунки опреде­ляют форму днища поршня 4. Днище поршня может иметь вогну­тую, двояковогнутую, выпуклую и другую формы. Некоторые формы днищ поршней показаны на рис. 140. При диаметре поршня более 400 мм головку поршня выполняют съемной. Разъемная конструкция позволяет уменьшить стоимость поршня, так как только головку изготовляют из дорогостоящего жаропрочного ма­териала, и облегчает ремонт поршня. Головку крепят к тройку болтами или шпильками.

В некоторых конструкциях поршня внутреннюю поверхность днища для предохранения от нагарообразования и защиты голов­ного подшипника от теплового излучения закрывают мембраной; для увеличения жесткости днище снизу подкрепляют ребрами, ко­торые одновременно улучшают его охлаждение.

Поршневой палец 1 (рис. 141) размещен в приливах (бобыш­ках) 2 и фиксируется от осевого смещения пружинными кольцами 3 . Пальцы закрепляются стопорным болтом 6 либо свободно вращаются — пальцы плавающего типа. Пальцы плавающего типа более распространены у быстроходных двигателей. Бронзовые втулки 4, запрессованные в бобышки чугунного поршня, являются подшипниками для поршневого пальца плавающего типа. Пальцы изготовляют из малоуглеродистой стали 15 или 20 с последующей цементацией и шлифованием или из легированной стали 15ХМА, 12МХ2А, 18ХНМА, 20Х и др. с последующей закалкой. В некото­рых конструкциях поршней с целью предотвращения соприкосно­вения пальца с зеркалом цилиндра ставят алюминиевые за­глушки 5 грибовидной формы.

Читать еще:  Как определить неисправность подушки двигателя?

Поршневые кольца располагают в канавках, проточенных в теле поршня. Поршневые кольца делятся на уплотнительные и маслосъемные. Уплотнительные кольца 2 (см. рис. 139) обеспечи­вают плотность поршня в цилиндре, предотвращают прорыв газов в картер двигателя и способствуют отводу тепла от головки поршня через втулку цилиндра охлаждающей воде. Маслосъемные кольца 6 и 7 (см. рис. 139) служат для удаления излишнего масла с зеркала цилиндра, что уменьшает нагарообразование в цилиндре, и не допускают проникновения масла в камеру сго­рания. Материалом для изготовления колец служит чугун СЧ24-44, реже сталь. Кольца изготовляют самопружинящими с разрезом-замком, обеспечивающим заводку кольца в канавку поршня и воз­можность теплового расширения кольца. Число уплотнительных колец шесть—три, маслосъемных три—одно. Уплотнительные кольца, как правило, прямоугольного сечения, рабочая поверхность кольца и поверхность зеркала цилиндра параллельны.

В от­личие от уплотнительных (компрессионных) маслосъемные кольца имеют скос (рис. 142, а), с помощью которого масло удаляется из зеркала цилиндра и через специальные каналы 5 (см. рис. 139) в поршне стекает в картер. Необходимо особо быть вниматель­ным при монтаже маслосъемных колец, не допуская установки кольца скосом вниз, так как тогда масло будет попадать в камеру сгорания. Зазоры между поршневыми кольцами и стенками ка­навки в радиальном направлении равны 0,5—1,0 мм, по высоте 0,15—0,066 мм.

Типы замков поршневых колец показаны на рис. 142, б . При установке колец на поршень необходимо стыки (замки) распола­гать в разных положениях по окружности во избежание утечки газов. Поршневые кольца поршней двухтактных двигателей для предохранения от проворачивания и попадания замка в район рас­положения окоп стопорят фиксаторами.

Поршень крейцкопфного двигателя соединяется с шатуном, штоком и крейцкопфом. В этом случае поршень крепят к штоку жестко специальным фланцевым соединением (рис. 143). Поршень крейцкопфного двигателя разгружен от боковых усилий и не имеет тронка.

На рис. 144 показан составной охлаждаемый поршень крейц­копфного двигателя, имеющего штампованную вставку из алюми­ниевого сплава АК6. Поршень состоит из трех основных частей: головки 1 , отлитой из высокопрочного жаростойкого чугуна, кор­пуса 3 из перлитного чугуна и вставки 2. В поршнях новейшей конструкции пазы (канавки) под уплотнительные кольца хроми­руют или завальцовывают чугунными противоизносными коль­цами. Общий вид поршня, крейцкопфа и шатуна с подшипником приведен на рис. 145.

Для достижения нормальных условий работы поршня необхо­димо обеспечить его охлаждение и прежде всего головки. Наибо­лее надежным средством снижения температуры головки яв­ляется искусственное охлаждение. При диаметрах цилиндра в двухтактных двигателях свыше 250 мм, а в четырехтактных свыше 400 мм применяют масляное охлаждение поршня. Охлаждение во­дой используют редко, так как требуется тщательное герметизи­рующее устройство, предотвращающее попадание воды в масло картера. Наиболее распространена телескопическая и шарнирная системы подачи охлаждающей жидкости под давлением в закры­тую полость поршня.

Штоки крейцкопфных двигателей выполняют стальными ко­ваными, круглого сечения, часто пустотелыми. В верхней части они имеют фланцы для крепления с поршнем, а нижней пяткой или хвостовиком 4 (рис. 146) соединяются с поперечиной 7 и фик­сируются гайкой 2. В состав крейцкопфа входят: стальной или чугунный ползун, опорные рабочие поверхности а и б которого покрыты тонким слоем антифрикционного сплава. Ползун, скользя по параллели картера, передает последней боковые усилия и та­ким образом разгружает поршень. Поверхность а передает боко­вые усилия при работе двигателя на передний ход, поверхность б , значительно меньшая по площади,— на задний ход. Ползун кре­пят болтами к стальной поперечине 3 . Поперечина имеет цапфы 1 , которые охватываются головным подшипником шатуна. В двига­телях, длительное время работающих на задний ход (буксиры, ле­доколы), ползуны выполняют двусторонними. По каналу 5 масло поступает на охлаждение поршня, а по каналу 6 — на смазку ра­бочих поверхностей ползуна.

На рис. 147 показана параллель крейцкопфного двигателя.

Ссылка на основную публикацию
Adblock
detector