Mbmsystems.ru

Для чего служит КШМ двигателя?

5-GORsk › Blog › Общие сведения и схемы кривошипно-шатунного механизма автомобильных двигателей

Кривошипно-шатунный механизм составляет основу конструк­ции большинства поршневых двигателей внутреннего сгорания. Назначение кривошипно-шатунного механизма состоит в том, чтобы воспринимать давление газов, возникающее в цилиндре, и преобра­зовывать прямолинейное возвратно-поступательное движение порш­ня во вращательное движение коленчатого вала. Эти две функции, выполняемые механизмом, и обеспечивают решение сложной проб­лемы, связанной с преобразованием тепловой энергии топлива в ме­ханическую работу при сжигании топлива в цилиндрах двигателей внутреннего сгорания.

В существующих поршневых двигателях применяются два типа кривошипно-шатунных механизмов: тронковые и крейцкопфные.

В тронковых механизмах шатун шарнирно соединен непосред­ственно с нижней направляющей (тронковой) частью поршня, тогда как в крейцкопфных механизмах поршень соединяется с ша­туном через шток и крейцкопф, которые служат для поршня направ­ляющей частью. Крейцкопфные механизмы более сложны и гро­моздки. Они увеличивают габариты двигателя по высоте и утяже­ляют его конструкцию.

В быстроходных поршневых двигателях автомобильного и трак­торного типов применяются более простые и компактные тронко­вые кривошипно-шатунные механизмы. Благодаря этим преиму­ществам тронковые механизмы в настоящее время широко приме­няются и в двигателях стационарного типа. Однако для двигателей двойного действия крейцкопфные механизмы остаются единственно возможными. Такие двигатели обычно строят двухтактными, позволяющими более чем в 3 раза увеличивать мощ­ность силовых установок по сравнению с аналогичными установ­ками, снабженными четырехтактными двигателями простого дей­ствия

Кривошипно-шатунный механизм тронковых двигателей состоит из неподвижных и подвижных деталей. К неподвижным относятся: цилиндр, крышка (головка) цилиндра и картер, обра­зующие остов двигателя; подвижную группу составляют: поршне­вой комплект (поршень с поршневым пальцем и уплотняющими кольцами), шатун, коленчатый вал и маховик.

Иногда к кривошипно-шатунному механизму относят только группу перечисленных подвижных деталей, что нельзя признать правильным, тем более по отношению к двигателям внутреннего сгорания. Во-первых, это не согласуется с самим определением механизма, немыслимого без наличия направляющего звена — стойки. Во-вторых, кроме того что стенки цилиндра служат направ­ляющими для поршня, цилиндр и его головка образуют замкнутую надпоршневую полость, без которой в двигателях внутреннего сгорания нельзя создать нужного давления газов над поршнем, которое он воспринимает и передает на коленчатый вал. Следова­тельно, отдельно от надпоршневой полости кривошипно-шатунный механизм поршневого двигателя не выполнял бы одну из основных своих функций.

Наиболее распространенные схемы компоновки кривошипно-шатупного механизма автомобильных двигателей приведены ниже.

Двигатели, построенные по схемам А, Б и В, называются одно­рядными. Чаще всего из них применяется схема А с вертикальным расположением цилиндров. В двигателях, предназначенных для автобусов, с успехом применяется схема В с горизонтальным рас­положением цилиндров. Такие двигатели удобно размещаются под полом кузова автобуса.

Сравнительно новой является схема Б с наклонным расположе­нием цилиндров (под углом от 20 до 45° к вертикальной оси). Дви­гатели с такой компоновкой используют для ряда современных лег­ковых автомобилей. При этом имеется возможность более рацио­нально размещать вспомогательное оборудование и впускные трубо­проводы.

Двигатели, построенные по схемам Г и Д, называются двухряд­ными. В настоящее время особенно широко применяется схема Г с V-образным расположением цилиндров. Четырех- и восьмицилинд­ровые V-образные двигатели по условиям их уравновешенности строят с углом между осями цилиндров равным 90°. Они выгодно отличаются по габаритам и весу от соответствующих однорядных и одинаково успешно используются на легковых автомобилях и на средних и тяжелых грузовиках, нуждающихся в силовых агрегатах повышенной мощности. Двигатели с кривошипным механизмом, выполненным по схеме Д, с углом между осями цилиндров 180° называются оппозитными. Такие двигатели с противолежащим расположением цилиндров применяются довольно редко, так как размещение их и обслуживание на автомобиле менее удобно, чем, например V-образных или однорядных горизон­тальных.

Автомобильные двигатели, как правило, строят многоцилин­дровыми. Они обычно имеют 2; 3; 4; 6; 8 и редко 12 или 16 цилин­дров. Одноцилиндровые двигатели на автомобилях не применяются и вообще для этой цели не пригодны, так как не могут удовлетвори­тельно работать в качестве автомобильных силовых агрегатов без утяжеленного маховика и сложного уравновешивающего устройства.

В самом деле, в одноцилиндровом, например, четырехтактном двигателе из двух оборотов вала только пол-оборота приходится на активный рабочий ход поршня. В течение остальных полутора оборотов скорость вращения коленчатого вала непрерывно замед­ляется, поскольку движение его в это время осуществляется за счет запаса кинетической энергии маховика, накапливаемой им в мо­мент ускоренного движения при рабочем ходе поршня, когда послед­ний «взрывом» газов отбрасывается к н.м.т. Следовательно, за вре­мя одного рабочего цикла коленчатый вал вращается с разной угло­вой скоростью, что крайне нежелательно.

Выравнивание угловой скорости вращения коленчатого вала в одноцилиндровом двигателе возможно только путем повышения уровня аккумулирования кинетической энергии маховика на участ­ке ускоренного движения, т.е. за счет увеличения его инерции. Естественно, при неизменных установившихся оборотах коленчато­го вала этого нельзя достигнуть без увеличения массы маховика. Маховик с большей массой будет вращаться равномернее, следова­тельно, уменьшится и колебание угловой скорости вращения вала. Однако такой путь полностью не избавит вал двигателя от неравно­мерности вращения. К тому же большая масса маховика требует и больше времени на его разгон до заданной скорости. Вследствие этого ухудшается приемистость двигателя и снижается динамика автомобиля, т.е. уменьшается быстрота раскрутки вала двигателя и разгона автомобиля.

Если предположить, что коленчатый вал вращается равномерно, то и в этом идеальном случае поршень в конце каждого хода меняет направление своего движения. В мертвых точках его скорость равна нулю, а потом нарастает до максимума, составляющего в автомо­бильных двигателях 15—25 м/сек при номинальном числе оборотов, и снова уменьшается до нуля в смежной мертвой точке.

Такое неравномерное движение поршня и связанного с ним комплекта деталей порождает переменные по величине и направле­нию силы инерции Pj возвратно-движущихся масс, действующие вдоль оси его движения, т. е. по оси цилиндра, как показано на рисунке.

Силы инерции Pj, периодически меняя величину и направле­ние своего действия, если остаются неуравновешенными, вызывают раскачивание двигателя вне зависимости от принятой схемы кри­вошипно-шатунного механизма (см. рисунок). Возникающая при этом вибрация двигателя передается на его крепления и на раму автомобиля, разрушая его узлы и увеличивая интенсивность их износа. Вследствие вибрации повышаются уровень шума и утомляе­мость водителя, что увеличивает опасность движения.

Устранить вибрацию, вызываемую силами инерции масс криво­шипно-шатунного механизма, совершающих возвратно-поступа­тельное движение, можно только в случае, если удается создать силы, равные по величине и противоположно направленные силам, вызывающим вибрацию. Для этого, как установлено, двигатель должен иметь несколько цилиндров с общим коленчатым валом, допускающим организацию необходимого разнонаправленного дви­жения поршней в отдельных цилиндрах. Это позволяет в известной мере уравновешивать двигатель, т.е. уменьшить воздействие на его остов сил, порождающих вибрацию.

Читать еще:  Какие датчики влияют на обороты двигателя?

Однако внешне уравновешенные силы инерции нагружают дета­ли двигателя, вызывая изгиб вала, увеличивая нагрузку коренных опор, т. е. создают внутреннюю неуравновешенность двигателя.

В многоцилиндровых двигателях интервал между рабочими ходами, выраженный в градусах угла поворота вала, определяется числом цилиндров i. Для четырехтактных и двухтактных двигателей эти интервалы при равномерном чередовании рабочих ходов соответ­ственно равны 720°/i и 360°/i.

Чем больше число цилиндров, тем меньше интервал между рабо­чими ходами и вал двигателя вращается равномернее.

Сравнительно хорошую степень уравновешенности и равномер­ность вращения вала имеет однорядный 6-цилиндровый двигатель. Ею считают полностью уравновешенным. При двухрядном V-образном расположении цилиндров с осями под углом 90° хорошую урав­новешенность имеют 8-цилиндровые двигатели. 8-цилиндровые одно­рядные двигатели считаются уравновешенными, но в настоящее время они утратили практическое значение, так как линейное расположение цилиндров приводит к излишнему удлинению колен­чатого вала и снижает его жесткость.

Силы давления газов в надпоршневой полости одинаково действуют как на поршень, так и на головку цилиндра, поэтому, имея всегда равную себе величину и противоположное направление (см. рисунок), эти силы взаимно уравновешиваются внутри системы и не оказывают влияния на вибрацию двигателя, но нагружают коленчатый вал и коренные подшипники. Равнодействующие газо­вых сил направлены по оси цилиндра, а величина их определяется из соотношения

где рг — избыточное удельное давление газов, взятое по индика­торной диаграмме, кГ/см2 (Мн/м2) Fп — площадь поршня, см2 (м2).

Силы давления газов Рг и инерционные силы Pj, действующие по оси цилиндра, суммируясь, дают силу Р∑, которая, будучи приложена к поршневому пальцу, раскладывается на боковую силу Nб давления на стенку цилиндра и на силу Рш, действующую по оси шатуна (см. рисунок Е).

Если силу Рш, руководствуясь правилами механики, перенести по линии ее действия в центр шатунной шейки и разложить на состав­ляющие, то получим силу Т, перпендикулярную к оси кривошипа, и силу Z, направленную по оси кривошипа (см. рисунок). Сила Т называется тангенциальной. Произведение силы Т на радиус кри­вошипа г называется крутящим моментом, который определяется по формуле, кГ·м (Мн·м),

где Мкр определяется путем непосредственного измерения с по­мощью динамометрического устройства испытательных тормозных установок. Крутящий момент измеряют для ряда чисел оборотов вала двигателя, а затем пересчетом определяют его мощность, развиваемую при этих оборотах вала. Полученная таким образом закономерность изменения мощности двигателя по числу оборотов вала называется скоростной характеристикой.

Состав и устройство узлов КШМ

КРИВОШИПНО-ШАТУННЫЙ МЕХАНИЗМ

1. Назначение КШМ и принцип работы.

2. Состав и устройство узлов КШМ.

1. Назначение КШМ и принцип работы.

Определение: механическая передача передающая энергию с преобразовани­ем видов движения.

В соответствие с общей классификацией машин и механизмов – кривошипно-ползунковый механизм (КПМ).

Назначение: КШМ служит для преобразования поступательного движения поршня под действием энергии расширения продуктов сгорания топлива во вра­щательное движение коленчатого вала.

Принцип действия: четырехтактный поршневой двигатель состоит из ци­линдра и картера, который снизу закрыт поддоном. Внутри цилиндра перемеща­ется поршень с уплотнительными (компрессионными) кольцами. Поршень через поршневой палец и шатун связан с коленчатым валом, который вращается в ко­ренных подшипниках, расположенных в картере. Сверху цилиндр накрыт голов­кой с клапанами, открытие и закрытие которых строго согласовано с вращением коленчатого вала. Перемещение поршня ограничивается двумя крайними поло­жениями, при которых его скорость равна нулю: верхней и нижней мертвой точ­кой. Безостановочное движение поршня через мертвые точки обеспечивается ма­ховиком, имеющим форму диска с массивным ободом.

Состав и устройство узлов КШМ.

Состав: все детали КШМ делятся на подвижные (рис.1) и неподвижные (рис. 2). К неподвижным (детали остова двигателя )относятся: картер, блок цилиндров, головка блока цилиндров и соединяющие их детали (рис. 2, 3), к подвижным – поршень с пальцем и кольцами, шатун, коленчатый вал и маховик.

Блок цилиндров является основой двигателя. Большая часть навесного обо­рудования двигателя монтируется на блоке цилиндров.

По форме блока цилинд­ров ДВС классифицируют:

– рядный двигатель: цилиндры располагаются последовательно в одной плос­кости; ось цилиндров вертикальна, под углом или горизонтальна ; число цилинд­ров – 2, 3, 4, 5, 6, 8;

– V-образный двигатель: цилиндры располагаются в двух плоскостях с обра­зованием конструкции V – образной формы; угол развала – от 30° до 90°; число цилиндров 2, 4, 5, 6, 8, 10, 12, 24;

– VR-образный двигатель: рядно-смещенное расположение цилиндров в шахматном порядке с углом развала 15°. Очень узкие V-образные двигатели тако­го типа долгое время делала итальянская фирма “Lancia”, и ее опыт используется концерном “Volkswagen”;

– W-образный двигатель: два рядно-смещенных блока VR, объединенных в V-образную конфигурацию с углом развала 72 °С. W8-Volkswagen Passat, W12- VW Phaeton и Audi A8, W16-Bugatti EB 16.4 Veyron;

– оппозитный двигатель: противолежащие друг другу цилиндры располага­ются горизонтально, число цилиндров – 2,4,6. Subaru обозначает свои оппозитные двигатели индексом “B” (Boxer), добавляя к нему цифру “4” или “6”, в зависимо­сти от числа цилиндров.

Нумерация цилиндров начинается от носка коленвала, а при двух-, и четы­рехрядном расположении цилиндров – слева, если смотреть со стороны носка ко­ленвала ( за исключением «РЕНО»). Направление вращения коленвала – правое, то есть по часовой стрелке, если смотреть с носка коленвала (за исключением Honda, Mitsubishi).

В конструкцию блока входят гильзы цилиндров, рубашка охлаждения и гер­метизированные масляные полости и каналы. Во внутренних полостях блока цир­кулирует жидкость системы охлаждения, там же проходят и масляные каналы системы смазки двигателя. Блок имеет монтажные и опорные поверхности для ус­тановки вспомогательных устройств.

Картер служит опорой для подшипников, на которых вращается коленчатый вал. Обычно выполняется заодно с блоком цилиндров. Такая конструкция называ­ется блок-картер. Снизу картер закрывается поддоном, в котором обычно хранит­ся запас масла.

Чаще картер и блок цилиндров отливают как одно целое. Если картер изготовляют отдельно, то к нему крепят или отдельные цилиндры, или блок цилиндров. Блок-картер совре­менного поршневого двигателя — это наиболее сложная и дорогая деталь. Он обладает большой жесткостью. В зависимости от вос­приятия нагрузки различают силовые схемы с несущими цилиндрами, с несущим блоком цилиндров, с несущими силовыми шпильками.

В первой схеме под действием сил давления газов стенки цилиндров и рубашки охлаждения испытывают напряжение разрыва. Во второй схеме, получившей наибольшее распространение, нагрузки восприни­маются стенками цилиндров и рубашки охлаждения, поперечными пе­регородками картера. В этой схеме часто используют сменные гиль­зы «мокрые» или «сухие» (рис. 3).

Рис. 1. Подвижные детали КШМ

Читать еще:  Из чего состоит клапан двигателя?

Рис. 2. Неподвижные детали ДВС

В этом случае основную нагрузку несут стенки рубашки охлаждения. Конструкция в целом оказывается менее жесткой. В третьей схеме растягивающие нагрузки воспри­нимаются силовыми шпильками, а цилиндр (или блок цилиндров) оказывается сжатым.

Рис. 3. Гильза цилиндров (а) и схемы по­садки мокрой (б) и сухой (в) гильз

При работе силы давления газов, растягивая шпильки, разгружа­ют цилиндр. Блок-картер служит базовой деталью, на нем размеща­ются все навесные агрегаты, механизмы и системы двигателя. Блок- картер воспринимает все силы, развивающиеся в работающем двига­теле, отдельные его элементы подвергаются значительному местному нагреву, он подвержен действию колебаний, а те его элементы, кото­рые сопрягаются с подвижными деталями двигателя, в процессе экс­плуатации сильно изнашиваются.

При длительной работе блок-кар­тер коробится из-за деформаций, действия силовых и тепловых нагрузок и структурных изменений в материале. Как следствие, теря­ются параллельность осей цилиндров, перпендикулярность осей ци­линдров к оси коленчатого вала, возникают другие нарушения макро­геометрии блока картера, что весьма нежелательно из-за увеличения трения, износа и даже выхода из строя всего двигателя.

Головка цилиндра (рис. 4) обеспечивает герметизацию верхней части ци­линдра. Совместно с днищами поршней, образует камеру сгорания. Обычно уста­навливается одна головка для всех цилиндров рядного и VR-образного, или две – для V, W и оппозитного двигателя. Она крепится к блоку цилиндров и, при работе составляет с ним единое целое. Уплотнение стыка обеспечивается прокладкой.

На большинстве ДВС в головке размещается привод клапанов, сами клапаны, свечи зажигания или накаливания, форсунки. Так же, как и в блоке цилиндров – имеются жидкостные и масляные каналы и полости.

Головки цилиндров подвержены действию максималь­ных сил давления газов, контактируют с нагретыми газами.

Рис. 4. Головка блока цилиндров: а) вид сверху, б) вид снизу

Для изготовления блок-картеров и головок цилиндров использу­ют серые или легированные чугуны марок СЧ 15-32, СЧ 21-40 и алюминиевые сплавы. Чугуны содержат около 3-4% углерода, ле­гирующие элементы (марганец, хром, никель, титан, медь, молибден), примеси серы и фосфора, кремний. Твердость чугунов составляет 230-250 по Бринеллю. Для све­дения к минимуму в про­цессе эксплуатации дефор­мации блока применяют операцию искусственного старения отливок перед механической обработкой.

Стенки блока цилиндров при работе двигателя ис­пытывают циклические на­пряжения изгиба. Обычно стремятся уменьшить ам­плитудные значения на­пряжения, что достигается путем оребрения поперечных стенок. Что­бы снизить упругие остаточные деформации постелей коренных под­шипников коленчатого вала, обеспечить их соосность и улучшить работу кривошипно-шатунного механизма, часто вводят силовые свя­зи между крышками коренных опор и стенками блока.

Очень важно при сборке, изготовлении или ремонте снизить так называемые монтажные деформации гильзы в сборе с блоком. Повы­шенные монтажные деформации гильзы, как свидетельствует опыт эксплуатации дизелей Д-37Е, ЯМЗ-236 и др., приводят к повы­шенному трению и преждевременному износу гильзы. Равномерность деформаций достигается путем обеспечения примерного равенст­ва деформаций участка блока при затяжке каждой шпильки, а их минимизация — путем увеличения жесткости гнезда, в котором раз­мещается шпилька. Блоки цилиндров и гильзы двигателей с водяным охлаждением подвержены кавитационному износу.

Причиной воз­никновения кавитации стенок блока цилиндров и гильз являются ин­тенсивные вибрации, возникающие при осуществлении рабочего про­цесса и ударах. Во избежание кавитационных износов в блоке цилинд­ров размещают антикавитационную защиту (например, в двигателе ЯМЗ), представляющую собой специальное антикавитационное пло­ское резиновое кольцо, устанавливаемое с натягом на гильзе и попада­ющее вместе с гильзой при сборке в выточку в блоке и гильзе. Как правило, при демонтаже узел разрушается, поэтому в эксплуатации при переборках его нужно заменять новым. Равномерного распре­деления нагрузок добиваются также во всех элементах головки блока цилиндров.

Особое внимание уделяют совершенствованию технологии литья головок и блоков цилиндров, чтобы снизить нарушение размеров отливок, избежать отбеливания чугуна, обеспечить точность и ста­бильность литья. Должным образом доведенная конструкция блока цилиндров и головки обеспечивает наработку 8000 моточасов и более.

Важный элемент конструкции — прокладка головки блока ци­линдров, обеспечивающая плотное соединение головки и блока ци­линдров и препятствующая прорыву газов из камеры сгорания при работе двигателя. Про­кладки делают цельноме­таллическими из меди или алюминия, тонкого сталь­ного листа (набора тонких листов), а также из листов графитизированного асбес­тового картона, положен­ных на стальную сетку.

Металлические проклад­ки используют в дизелях с жесткими блоками и го­ловками и при большой силе затяжки шпилек. Ас­бестовые прокладки при­меняют в карбюраторных двигателях, а также в ди­зелях. Шпильки, которыми притягивают головки и прокладку к блоку цилинд­ров, изготовляют из угле­родистых и легированных сталей. Нижняя часть кар­тера (поддон) в двигателях не является несущей. Ее отливают из алюминиевого сплава или штампуют из тонкого стального листа. Поддон обычно служит ванной для масла, в нем размещают маслоприемные устройства, успокоители против разбрызгивания. Устанавливают его на про­кладках для предотвращения вытекания масла.

Шпильки подвергают расчетам на прочность на знакопеременные нагрузки. Оценки напряжений в элементах головок и блоков цилинд­ров по формулам сопротивления материалов носят условный харак­тер. Лишь в последние годы, после того как был развит метод конеч­ных элементов, стала возможной постановка задачи о расчетах на прочность таких сложных по конфигурации деталей, как блок цилинд­ров и головка. Расчеты эти требуют применения мощных вычислитель­ных машин. Традиционно заводы-изготовители много времени и сил затрачивают на экспериментальное определение характеристик на­дежности, вибрационной стойкости деталей остова.

Не нашли то, что искали? Воспользуйтесь поиском:

Назначение и устройство кривошипно-шатунного механизма ДВС

Двигатели внутреннего сгорания, используемые на автомобилях, функционируют за счет преобразования энергии, выделяемой при горении горючей смеси, в механическое действие – вращение. Это преобразование обеспечивается кривошипно-шатунным механизмом (КШМ), который является одним из ключевых в конструкции двигателя автомобиля.

Кривошипно-шатунный механизм двигателя состоит из трех основных деталей:

  1. Цилиндро-поршневая группа (ЦПГ).
  2. Шатун.
  3. Коленчатый вал.

Все эти компоненты размещаются в блоке цилиндров.

Назначение ЦПГ — преобразование выделяемой при горении энергии в механическое действие – поступательное движение. Состоит ЦПГ из гильзы – неподвижной детали, посаженной в блок в блок цилиндров, и поршня, который перемещается внутри этой гильзы.

После подачи внутрь гильзы топливовоздушной смеси, она воспламеняется (от внешнего источника в бензиновых моторах и за счет высокого давления в дизелях). Воспламенение сопровождается сильным повышением давления внутри гильзы. А поскольку поршень это подвижный элемент, то возникшее давление приводит к его перемещению (по сути, газы выталкивают его из гильзы). Получается, что выделяемая при горение энергия преобразуется в поступательное движение поршня.

Для нормального сгорания смеси должны создаваться определенные условия – максимально возможная герметичность пространства перед поршнем, именуемое камерой сгорания (где происходит горение), источник воспламенения (в бензиновых моторах), подача горючей смеси и отвод продуктов горения.

Читать еще:  Стучат пальцы в двигателе что делать?

Герметичность пространства обеспечивается головкой блока, которая закрывает один торец гильзы и поршневыми кольцами, посаженными на поршень. Эти кольца тоже относятся к деталям ЦПГ.

ШАТУН

Следующий компонент КШМ – шатун. Он предназначен для связки поршня ЦПГ и коленчатого вала и передает механических действий между ними.

Шатун представляет собой шток двутавровой формы поперечного сечения, что обеспечивает детали высокую устойчивость на изгиб. На концах штока имеются головки, благодаря которым шатун соединяется с поршнем и коленчатым валом.

По сути, головки шатуна представляют собой проушины, через которые проходят валы обеспечивающие шарнирное (подвижное) соединение всех деталей. В месте соединения шатуна с поршнем, в качестве вала выступает поршневой палец (относится к ЦПГ), который проходит через бобышки поршня и головку шатуна. Поскольку поршневой палец извлекается, то верхняя головка шатуна – неразъемная.

В месте соединения шатуна с коленвалом, в качестве вала выступают шатунные шейки последнего. Нижняя головка имеет разъемную конструкцию, что и позволяет закреплять шатун на коленчатом валу (снимаемая часть называется крышкой).

КОЛЕНЧАТЫЙ ВАЛ

Назначение коленчатого вала — это обеспечение второго этапа преобразования энергии. Коленвал превращает поступательное движение поршня в свое вращение. Этот элемент кривошипно-шатунного механизма имеет сложную геометрию.

Состоит коленвал из шеек – коротких цилиндрических валов, соединенных в единую конструкцию. В коленвале используется два типа шеек – коренные и шатунные. Первые расположены на одной оси, они являются опорными и предназначены для подвижного закрепления коленчатого вала в блоке цилиндров.

В блоке цилиндров коленчатый вал фиксируется специальными крышками. Для снижения трения в местах соединения коренных шеек с блоком цилиндров и шатунных с шатуном, используются подшипники трения.

Шатунные шейки расположены на определенном боковом удалении от коренных и к ним нижней головкой крепится шатун.

Коренные и шатунные шейки между собой соединяются щеками. В коленчатых валах дизелей к щекам дополнительно крепятся противовесы, предназначенные для снижения колебательных движений вала.

Шатунные шейки вместе с щеками образуют так называемый кривошип, имеющий П-образную форму, который и преобразует поступательного движения во вращение коленчатого вала. За счет удаленного расположения шатунных шеек при вращении вала они движутся по кругу, а коренные — вращаются относительно своей оси.

Количество шатунных шеек соответствует количеству цилиндров мотора, коренных же всегда на одну больше, что обеспечивает каждому кривошипу две опорных точки.

На одном из концов коленчатого вала имеется фланец для крепления маховика – массивного элемента в виде диска. Основное его назначение: накапливание кинетической энергии за счет которой осуществляется обратная работа механизма – преобразование вращения в движение поршня. На втором конце вала расположены посадочные места под шестерни привода других систем и механизмов, а также отверстие для фиксации шкива привода навесного оборудования мотора.

ПРИНЦИП РАБОТЫ МЕХАНИЗМА

Принцип работы кривошипно-шатунного механизма рассмотрим упрощенно на примере одноцилиндрового мотора. Такой двигатель включает в себя:

  • коленчатый вал с двумя коренными шейками и одним кривошипом;
  • шатун;
  • и комплект деталей ЦПГ, включающий в себя гильзу, поршень, поршневые кольца и палец.

Воспламенение горючей смеси выполняется когда объем камеры сгорания минимальный, а обеспечивается это при максимальном поднятии вверх поршня внутри гильзы (верхняя мертвая точка – ВМТ). При таком положении кривошип тоже «смотрит» вверх. При сгорании выделяемая энергия толкает вниз поршень, это движение передается через шатун на кривошип, и он начинает двигаться по кругу вниз, при этом коренные шейки вращаются вокруг своей оси.

При провороте кривошипа на 180 градусов поршень достигает нижней мертвой точки (НМТ). После ее достижения выполняется обратная работа механизма. За счет накопленной кинетической энергии маховик продолжает вращать коленвал, поэтому чему кривошип проворачивается и посредством шатуна толкает поршень вверх. Затем цикл полностью повторяется.

Если рассмотреть проще, то один полуоборот коленвала осуществляется за счет выделенной при сгорании энергии, а второй – благодаря кинетической энергии, накопленной маховиком. Затем процесс повторяется вновь.

ОСОБЕННОСТИ РАБОТЫ ДВИГАТЕЛЯ. ТАКТЫ

Выше описана упрощенная схема работы КШМ. В действительности чтобы создать необходимые условия для нормального сгорания топливной смеси, требуется выполнение подготовительных этапов – заполнение камеры сгорания компонентами смеси, их сжатие и отвод продуктов горения. Эти этапы получили название «такты мотора» и всего их четыре – впуск, сжатие, рабочий ход, выпуск. Из них только рабочий ход выполняет полезную функцию (именно при нем энергия преобразуется в движение), а остальные такты – подготовительные. При этом выполнение каждого этапа сопровождается проворотом коленвала вокруг оси на 180 градусов.

Конструкторами разработано два типа двигателей – 2-х и 4-тактный. В первом варианте такты совмещены (рабочий ход с выпуском, а впуск – со сжатием), поэтому в таких моторах полный рабочий цикл выполняется за один полный оборот коленвала.

В 4-тактном двигателе каждый такт выполняется по отдельности, поэтому в таких моторах полный рабочий цикл выполняется за два оборота коленчатого вала, и только один полуоборот (на такте «рабочий ход») выполняется за счет выделенной при горении энергии, а остальные 1,5 оборота – благодаря энергии маховика.

ОСНОВНЫЕ НЕИСПРАВНОСТИ

Несмотря на то, что кривошипно-шатунный механизм работает в жестких условиях, эта составляющая двигателя достаточно надежная. При правильном проведении технического обслуживания, механизм работает долгий срок.

При правильной эксплуатации двигателя ремонт КШМ потребуется только из-за износа ряда составных деталей – поршневых колец, шеек коленчатого вала, подшипников скольжения.

Поломки составных компонентов КШМ происходят в основном из-за нарушения правил эксплуатации силовой установки (постоянная работа на повышенных оборотах, чрезмерные нагрузки), невыполнения ТО, использования неподходящих горюче-смазочных материалов.

Последствиями такого использования мотора могут быть:

  • залегание и разрушение колец;
  • прогорание поршня;
  • трещины стенок гильзы цилиндра;
  • изгиб шатуна;
  • разрыв коленчатого вала;
  • «наматывание» подшипников скольжения на шейки.

Такие поломки КШМ очень серьезны, зачастую поврежденные элементы ремонту не подлежат их нужно только менять. В некоторых случаях поломки КШМ сопровождаются разрушениями иных элементов мотора, что приводит мотор в полную негодность без возможности восстановления.

ОБСЛУЖИВАНИЕ КШМ

Чтобы КШМ не стало причиной выхода из строя силового агрегата, достаточно выполнять ряд правил:

  1. Не допускать длительной работы двигателя на повышенных оборотах и под большой нагрузкой.
  2. Своевременно менять моторное масло и использовать смазку, рекомендованную автопроизводителем.
  3. Использовать только качественное топливо.
  4. Проводить согласно регламенту замену воздушных фильтров.

Не стоит забывать, что нормальное функционирование мотора зависит не только от КШМ, но и от смазки, охлаждения, питания, зажигания, ГРМ, которым также требуется своевременное обслуживание.

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]